matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenStetigkeitFunktionen gleich auf [0,1)
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Stetigkeit" - Funktionen gleich auf [0,1)
Funktionen gleich auf [0,1) < Stetigkeit < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Funktionen gleich auf [0,1): Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:14 Mi 26.10.2011
Autor: Igor1

Hallo,

seien f,g stetige Funktionen , die auf [0,1) gleich sind und beide im Punkt [mm] x_{0}:=1 [/mm] stetig sind.
Dann sind sie auf [0,1] gleich. (Woher weiß man das? Gibt es
einen konkreten Satz dafür?Hat das damit zu tun , dass man eine Funktion eindeutig stetig fortsetzen kann (gibt es sowas ?) )
(die beiden Funktionen können einen Definitionsbereich haben, der nicht unbedingt gleich dem Intervall [0,1]  sein soll)

Als Beispiel ( wegen dem stelle ich diese Frage):
ln(x+1) = [mm] \summe_{n=1}^{\infty}\bruch{(-1)^{n}}{n}*x^{n} [/mm] für x [mm] \in [/mm] [0,1). Wegen dem Abelschen Grenzwertsatz ist die Potenzreihe in 1 stetig.
ln(x+1) ist auch in 1 stetig.
In Forster steht, dass beide Funktionen auch in [mm] \x_{0}=1 [/mm] gleich sind.

Kann man diese Aussage folgendermassen zeigen:

sei g(x):=ln(x+1), h(x):=  [mm] \summe_{n=1}^{\infty}\bruch{(-1)^{n}}{n}*x^{n} [/mm]
zu zeigen: g(1)=h(1)

Da beide Funktionen in [mm] x_{0} [/mm] stetig sind, gilt

[mm] \limes_{x\rightarrow\1}g(x)=g(1) [/mm]
[mm] \limes_{x\rightarrow\1}h(x)=h(1) [/mm]
also es ist zu zeigen, dass
[mm] \limes_{x\rightarrow\1}g(x)=\limes_{x\1}h(x) [/mm] gilt.
Hier würde ich das so argumentieren:
Da [mm] x\not= [/mm] 1 und g(x)=h(x) für [mm] x\in [/mm] [0,1) und damit die Behauptung  ?


Gruss
Igor




        
Bezug
Funktionen gleich auf [0,1): Antwort
Status: (Antwort) fertig Status 
Datum: 14:20 Mi 26.10.2011
Autor: donquijote


> Hallo,
>  
> seien f,g stetige Funktionen , die auf [0,1) gleich sind
> und beide im Punkt [mm]x_{0}:=1[/mm] stetig sind.
> Dann sind sie auf [0,1] gleich. (Woher weiß man das? Gibt
> es
>  einen konkreten Satz dafür?Hat das damit zu tun , dass
> man eine Funktion eindeutig stetig fortsetzen kann (gibt es
> sowas ?) )

siehe unten, da du aufgrund der Stetigkeit  f(1) als Grenzwert erhältst.
Das gilt jedoch nur, wenn vorausgesetzt wird, dass f in 1 definiert und stetig ist, ansonsten muss der Grenzwert nicht existieren (z.B. f(x)=1/(1-x))

>  (die beiden Funktionen können einen Definitionsbereich
> haben, der nicht unbedingt gleich dem Intervall [0,1]  sein
> soll)
>  
> Als Beispiel ( wegen dem stelle ich diese Frage):
> ln(x+1) = [mm]\summe_{n=1}^{\infty}\bruch{(-1)^{n}}{n}*x^{n}[/mm]
> für x [mm]\in[/mm] [0,1). Wegen dem Abelschen Grenzwertsatz ist die
> Potenzreihe in 1 stetig.
>  ln(x+1) ist auch in 1 stetig.
>  In Forster steht, dass beide Funktionen auch in [mm]\x_{0}=1[/mm]
> gleich sind.
>  
> Kann man diese Aussage folgendermassen zeigen:
>  
> sei g(x):=ln(x+1), h(x):=  
> [mm]\summe_{n=1}^{\infty}\bruch{(-1)^{n}}{n}*x^{n}[/mm]
>  zu zeigen: g(1)=h(1)
>  
> Da beide Funktionen in [mm]x_{0}[/mm] stetig sind, gilt
>
> [mm]\limes_{x\rightarrow\1}g(x)=g(1)[/mm]
> [mm]\limes_{x\rightarrow\1}h(x)=h(1)[/mm]
>  also es ist zu zeigen, dass
>  [mm]\limes_{x\rightarrow\1}g(x)=\limes_{x\1}h(x)[/mm] gilt.
>  Hier würde ich das so argumentieren:
>  Da [mm]x\not=[/mm] 1 und g(x)=h(x) für [mm]x\in[/mm] [0,1) und damit die
> Behauptung  ?

Die Argumentation ist vollkommen korrekt, da gibt es nix hinzuzufügen.

>  
>
> Gruss
>  Igor
>  
>
>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]