matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra / VektorrechnungFunktionen (Linear)
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Lineare Algebra / Vektorrechnung" - Funktionen (Linear)
Funktionen (Linear) < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Funktionen (Linear): Frage
Status: (Frage) beantwortet Status 
Datum: 19:34 Mi 14.09.2005
Autor: Stromberg

Hallo nochmal,

zu der bereits gelösten Textaufgabe gibt es einen folgenden 2. Teil, den ich euch hier vorstellen möchte um meine Ansätze zu überprüfen.

Also nochmals kurz die Textaufgabe und im Anschluss mein Lösungsansatz.

Berechnen Sie die Gleichung der Geraden durch den gegebenen Punkt
A (1/2) die außerdem durch den Nullpunkt geht.

Somit liegt doch eigentlich der "b" Wert der Gleichung y=mx+b fest....nämlich 0.
Oder sehe ich das falsch.



        
Bezug
Funktionen (Linear): Steigung
Status: (Antwort) fertig Status 
Datum: 19:40 Mi 14.09.2005
Autor: Loddar

Hallo Stromberg!


Mit $b \ = \ 0$ liegst Du goldrichtig [daumenhoch] !


Aber nun musst Du natürlich noch die Steigung $m_$ berechnen (denn die hat ja nun nichts mehr mit der anderen Teilaufgabe zu tun) ...


Gruß
Loddar


Bezug
                
Bezug
Funktionen (Linear): @Loddar
Status: (Frage) beantwortet Status 
Datum: 20:04 Mi 14.09.2005
Autor: Stromberg

Hallo,

danke für die Antwort.

Nach meinem Wissen nutze ich hierbei folgende Formel:
Punkt-Steigungs-Formel m = y- [mm] y^1 [/mm] : x- [mm] x^1 [/mm]
Ist dies richtig???
Nun stellt sich mir die Frage wenn ich aus dem gegebenen Punkt A (1/2) 1 als [mm] x^1 [/mm] setzte und 2 als [mm] y^1, [/mm] was ist in dieser Formel dann noch y und x

Bezug
                        
Bezug
Funktionen (Linear): Zwei-Punkte-Form
Status: (Antwort) fertig Status 
Datum: 20:30 Mi 14.09.2005
Autor: Loddar

Hallo Stromberg!


Die Punkt-Steigungs-Form nutzt Dir hier nicht allzuviel, da Du ja bisher keine Steigung $m_$ gegeben hast.

Du hast aber zwei Punkte gegeben: $A \ (1|2)$ sowie $O \ (0|0)$ .


Daher verwenden wir hier die Zwei-Punkte-Form:    [mm] $\bruch{y-y_1}{x-x_1} [/mm] \ = \ [mm] \bruch{y_2-y_1}{x_2-x_1}$ [/mm]

Nun die gegeben Werte einsetzen und in die Normalform $y \ = \ m*x+b$ umstellen.


Nun klar(er) ??

Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]