matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenÖkonomische FunktionenFunktionen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Ökonomische Funktionen" - Funktionen
Funktionen < Ökonomische Funktion < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Ökonomische Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Funktionen: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 18:46 Fr 13.01.2012
Autor: Intelo

Hallo Forumfreunde!

Ich habe folgende Preis-Absatzfunktion:

p(x)= [mm] \wurzel{1000}x-0,4x [/mm]

Berechnen Sie die Menge, bei der der Erlös maximal wird, den maximalen Erlös und den dazugehörigen Preis.

Meine Frage wäre jetzt, wie ich die Ableitung aus der [mm] \wurzel{1000}x [/mm] bekomme. Irgendwelche Ideen?

Vielen vielen Dank für die großartige Hilfe!

Lieben Gruß

Intelo

        
Bezug
Funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:50 Fr 13.01.2012
Autor: schachuzipus

Hallo Intelo,


> Hallo Forumfreunde!
>  
> Ich habe folgende Preis-Absatzfunktion:
>  
> p(x)= [mm]\wurzel{1000}x-0,4x[/mm]
>  
> Berechnen Sie die Menge, bei der der Erlös maximal wird,
> den maximalen Erlös und den dazugehörigen Preis.
>  
> Meine Frage wäre jetzt, wie ich die Ableitung aus der
> [mm]\wurzel{1000}x[/mm] bekomme. Irgendwelche Ideen?

Na, die [mm]\sqrt{1000}[/mm] ist doch "nur" eine multiplikative Konstante.

Wie leitest du denn [mm]1000x[/mm] ab? Oder das hintere [mm]0,4x[/mm] ?

Das geht genauso mit dem [mm]\sqrt{1000}[/mm] als Faktor ...


>  
> Vielen vielen Dank für die großartige Hilfe!
>  
> Lieben Gruß
>  
> Intelo

Gruß

schachuzipus


Bezug
        
Bezug
Funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:11 Sa 14.01.2012
Autor: mathemak

Hallo!

$E(x) = p(x) [mm] \cdot [/mm] x$

Das solltest Du irgendwo aufgeschrieben haben. Den maximalen Erlös findest Du entweder mit oder ohne Ableitung.

Gruß

mathemak

Bezug
                
Bezug
Funktionen: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 13:53 Mo 16.01.2012
Autor: Intelo

Vielen Dank für eure Antworten!

Ich habe jetzt folgenden Ansatz probiert.

p(x)= [mm] \wurzel{1000}-0,4x [/mm]
p(x)= [mm] x^{1/2}*\wurzel{1000}-0,4x [/mm]
p(x)= [mm] 31,6227766*x^{1/2}-0,4x [/mm]
E(x)= [mm] 15,8113883x^{-1/2}-0,4x [/mm]
E(x)= [mm] 15,8113883x^{-1/2}-0.4x [/mm] =0 ->+0,4
E(x)= [mm] 15,8113883x^{-1/2}= [/mm] -0.4

Dieser Ansatz scheint mir falsch. Könnt ihr mir helfen?

Vielen Dank im Voraus!

Lieben Gruß

Intelo

Bezug
                        
Bezug
Funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 14:02 Mo 16.01.2012
Autor: fred97


> Vielen Dank für eure Antworten!
>  
> Ich habe jetzt folgenden Ansatz probiert.
>  
> p(x)= [mm]\wurzel{1000}-0,4x[/mm]

Drei Versionen hast Du angeboten:

p(x)= [mm]\wurzel{1000}-0,4x[/mm], p(x)= [mm]\wurzel{1000x}-0,4x[/mm], p(x)= [mm]\wurzel{1000}x-0,4x[/mm]



Entscheide Dich !

>  p(x)= [mm]x^{1/2}*\wurzel{1000}-0,4x[/mm]
>  p(x)= [mm]31,6227766*x^{1/2}-0,4x[/mm]
>  E(x)= [mm]15,8113883x^{-1/2}-0,4x[/mm]

Wenn E(x)=p(x)x ist , so stimmt das nicht !


FRED


>  E(x)= [mm]15,8113883x^{-1/2}-0.4x[/mm] =0 ->+0,4
>  E(x)= [mm]15,8113883x^{-1/2}=[/mm] -0.4
>  
> Dieser Ansatz scheint mir falsch. Könnt ihr mir helfen?
>  
> Vielen Dank im Voraus!
>  
> Lieben Gruß
>  
> Intelo


Bezug
                                
Bezug
Funktionen: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 15:45 Fr 20.01.2012
Autor: Intelo

Sorry für die späte Antwort!

Vielen Dank für die Hilfe! So ich hab einen neuen Ansatz, da mir der hier irgendwie merkwürdig vorkam. Ich bin nun zu folgender Rechnung gekommen!

[mm] p(x)=\wurzel{1000x}-0,4x [/mm]

1. Ableitung ist die Erlösfunktion:

E(x)= [mm] 1000x^{-1/2}-0,4 [/mm]

Um das Erlösmaximum zu berechnen muss man x berechen. Hier taucht schon das erste Problem auf:

[mm] E(x)=1000x^{-1/2}-0,4=0 [/mm] -> +0,4
[mm] E(x)=1000x^{-1/2}= [/mm] 0,4

Wie soll ich das jetzt dividieren? Mich verwirrt das [mm] 1000x^{-1/2} [/mm]   :-)

Ich bedanke mich für eure tolle Hilfe!

Ganz lieben Gruß

Intelo


Bezug
                                        
Bezug
Funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:23 Fr 20.01.2012
Autor: Diophant

Hallo,

deine Ableitung stimmt nicht. Beachte die ABleitung der Wurzelfunktion:

[mm] \left(\wurzel{x}\right)'=\bruch{1}{2\wurzel{x}} [/mm]

Und verwende die Kettenregel!

Gruß, Diophant

Bezug
                                                
Bezug
Funktionen: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 16:42 Fr 20.01.2012
Autor: Intelo

Vielen Dank Diophant!

Ich hab jetzt folgende Ableitung, aber ich tue mich damit immer schwer..

[mm] E(x)=\bruch{500}{\wurzel{1000x}-0,4x} [/mm]

Bei Wurzel-Ableitungen komm ich irgendwie nicht klar. Ich werde noch wahnsinnig:-)

DANKE!

Lieben Gruß

Intelo

Bezug
                                                        
Bezug
Funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:11 Fr 20.01.2012
Autor: Diophant

Hallo,

die Ableitung lautet

[mm] p'(x)=\bruch{500}{\wurzel{1000x}}-0,4 [/mm]

Weshalb nennst du sie jetzt E(x)? Meiner Ansicht nach (ich bin da aber kein Experte) gilt für die Erlösfunktion genau das, was mathemak weiter oben schon geschrieben hat.

Gruß, Diophant

Bezug
                                                                
Bezug
Funktionen: Anmerkung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:26 Fr 20.01.2012
Autor: Intelo

Hey Diophant!

Vielen Dank!

Du hast recht, ich hab das nur verwechselt. E(x)= p(x)*x

Ich bin da durcheinander gekommen.

Vielen lieben Dank!

Liebe Grüße

Intelo

Bezug
                                                                        
Bezug
Funktionen: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 17:52 Fr 20.01.2012
Autor: Intelo

Und nun ich schon wieder.

jetzt stellt sich mir folgendes Problem:

[mm] p(x)=\wurzel{1000x}-0,4x [/mm]

Um die Erlösfunktion zu ermitteln, muss ich p(x)*x nehmen.

[mm] E(x)=\wurzel{1000x}-0,4x*x [/mm]

Ist es möglich, das Ergebnis einer Wurzel mal x zu nehmen.

E(x)= [mm] \wurzel{1000x^{2}}-0,4x^{2} [/mm]

Kann man das so machen, oder muss man da etwas wegen der Wurzel beachten?

DANKE!!!!!!

Lieben Gruß

Intelo

Bezug
                                                                                
Bezug
Funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:05 Fr 20.01.2012
Autor: Diophant

Hallo,

du musst Klammern setzen:

[mm] E(x)=\left(\wurzel{1000x}-0,4x\right)*x [/mm]

Und beachten, dass

[mm] x*\wurzel{x}=\wurzel{x^3} [/mm]

gilt. Potenzgesetze sind bekannt?

Gruß, Diophant

Bezug
                                                                                        
Bezug
Funktionen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:38 Fr 20.01.2012
Autor: Intelo

Hallo Diophant,

Die Funktion lautet ja dann:

[mm] E(x)=\wurzel{1000x^{3}}-0,4x^{2} [/mm]

[mm] \wurzel{1000x^{3}}-0,4x^{2}=0 [/mm]

Wie kriege ich beim Berechnen die Potenzen weg? Da ich ja nur x haben möchte? DANKE!

Ich tue mich echt immer schwer, da mich diese ganzen Potenzen immer irritieren.

Vielen lieben Dank für die geduldige Hilfe!

Gruß

Intelo


Bezug
                                                                                                
Bezug
Funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:46 Fr 20.01.2012
Autor: MathePower

Hallo Intelo,

> Hallo Diophant,
>  
> Die Funktion lautet ja dann:
>  
> [mm]E(x)=\wurzel{1000x^{3}}-0,4x^{2}[/mm]
>  
> [mm]\wurzel{1000x^{3}}-0,4x^{2}=0[/mm]
>
> Wie kriege ich beim Berechnen die Potenzen weg? Da ich ja
> nur x haben möchte? DANKE!
>  


Es gilt: [mm]\wurzel{1000*x^{3}}=\wurzel{1000}*x^{\bruch{3}{2}}[/mm]

Damit ist

[mm]E(x)=\wurzel{1000x^{3}}-0,4x^{2}=\wurzel{1000}*x^{\bruch{3}{2}}-0,4x^{2}[/mm]

Und jetzt kannst Du E(x) faktorisieren, d.h. in zwei Faktoren zerlegen.


> Ich tue mich echt immer schwer, da mich diese ganzen
> Potenzen immer irritieren.
>  
> Vielen lieben Dank für die geduldige Hilfe!
>  
> Gruß
>
> Intelo
>  


Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Ökonomische Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]