matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionenFunktionen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Funktionen" - Funktionen
Funktionen < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Funktionen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:14 Mi 16.12.2009
Autor: jugliema

Aufgabe
1. f(x)= [mm] x^{3} [/mm] mit [mm] D_{f}=\IR [/mm] hat keine eindeutige Umkehrfunktion?
2.Mit der angabe des Definitionsbereichs und der Zuordung x [mm] \rightarrow [/mm] f(x) ist eine Funktion eindeutig festgelegt.
3.Jede surjektive Funktion ist umkehrbar.
4. f(x) = [mm] \left| x \right| [/mm] ist wegen des Knicks nicht stätig in Null.

Hallo, oben genannte Fragen sollen nur mit richtig oder Falsch beantwortet werden.

Habe jatzt wie folgt beantwortet.

1.richtig
2. richtig, oder muss auch der Bildbereich festgelegt werden??
3. richtig, da jede Funktion umkehrbar ist wenn sie surjektiv und injektiv ist
4. weis ich leider nicht

kann mir jemand sagen ob das so richtig ist, bzw bei der 4. weiterhelfen.
Danke im Voraus

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 14:36 Mi 16.12.2009
Autor: nooschi

es wäre nützlich wenn du in deinem Profil schreiben würdest, was dein mathematisches Hintergrundwissen ist......

1. falsch, die Umkehrfunktion ist: [mm] x=y^{3} \Rightarrow \wurzel[3]{x}=y [/mm]

2. ich würde sagen richtig, Wertebereich wird ja indirekt durch f(x) angegeben. da bin ich mir jetzt aber nicht sicher!!!

3. falls es in der Aufgabe wirklich surjektiv heisst, dann ist das falsch (weil bei einer Funktion muss jedes x EINEM eindeutigen Wert y zugeordnet werden, was bei der Umkehrung von einer surjektiven Funktion nicht unbedingt der Fall sein muss). Deine Begründung von deiner Lösung bei 3 klingt aber eher so, als würde in der Aufgabe bijektiv stehen, dann wäre das natürlich richtig.

4. das ist falsch, |x| ist stetig (aber nicht differenzierbar)





da ich aber jetzt nicht weiss, was dein mathematisches Hintergrundwissen ist, weiss ich nicht ob ihr die Aussagen noch beweisen müsstet... Die letzte Aufgabe würde ich Epsilon-Delta-Kriterium beweisen und die 3 mit einem Gegenbeispiel (falls in der Aufgabe surjektiv steht)



Bezug
                
Bezug
Funktionen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:49 Mi 16.12.2009
Autor: jugliema

Danke für die schnelle Antwort du hast mir sehr weitergeholfen.



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]