matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMathe Klassen 8-10Funktionen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Mathe Klassen 8-10" - Funktionen
Funktionen < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Funktionen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:45 Sa 25.11.2006
Autor: Aristoteles

Aufgabe
Wie kann man rechnerisch die krümmung einer funktion im intervall [0;3] feststellen, und wie kann man rechnerisch feststellen wo ein Maximum vorhanden ist?

diese 2 fragen kann ich leider nicht beantworten!

bitte erklärt mir diese beiden fragen!

mfg

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:15 Sa 25.11.2006
Autor: hase-hh

moin,

das ist eine ziemlich umfassende frage, die du da stellst.

wir könnten dir bestimmt  genauer und schneller antworten, wenn du uns sagst, um welche funktionen es sich dabei handelt.

ich gehe mal davon aus, dass du (ganzrationale) funktionen 1. bzw. 2. Grades meinst, also

geraden und parabeln.

"krümmung" würde ich in diesem fall als steigung sehen
und "maximum" die stelle, an der die funktion den größten y-wert hat.

bei geraden ist die "krümmung" = steigung definiert als

die veränderung der y-werte durch die veränderung der x-werte

bei einer geraden suchst du dir einfach zwei punkte [mm] P_{1}(x_{1} [/mm] / [mm] y_{1}) [/mm]
und [mm] P_{2}(x_{2} [/mm] / [mm] y_{2}) [/mm]

dann ist die steigung m = [mm] \bruch{y_{2} - y_{1}}{x_{2} - x_{1}} [/mm]

diese formel heisst auch: differenzenquotient.

das lokale maximum im intervall [0;3]  

kannst du bestimmen, nachdem du die steigung ermittelt hast.

wenn m>0 ist, dann ist dein lokales maximum bei x=3

wenn m<0 ist, dann nimmt deine funktion im intervall [0;3] den größten wert bei x=0 an.

Tipp: eine kleine skizze kann vieles klar machen!

dies gilt allerdings nur für geraden.

b) bei parabeln verändert sich die steigung laufend, d.h.

du kannst zwar mithilfe des differenzenquotienten (s.o.) die steigung von [mm] P_{1} [/mm] zu [mm] P_{2} [/mm] berechnen, weisst aber bei einer parabel immer noch nicht, was dazwischen passiert. dafür müßte man den differntialquotienten bestimmen bzw. die sogenannte erste ableitung der funktion bilden, das ist aber keinesfalls stoff der 7. klasse!

leichter ist es bei parabeln den höchsten punkt zu bestimmen, indem man

die gleichung auf die scheitelpunktform bringt.


gruß
wolfgang











Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]