matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionenFunktionen-Umkehrfunktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Funktionen" - Funktionen-Umkehrfunktion
Funktionen-Umkehrfunktion < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Funktionen-Umkehrfunktion: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 14:29 Mo 07.05.2007
Autor: Tanja1985

Aufgabe
gegeben: f: [mm] X\to [/mm] Y und g: Y [mm] \to [/mm] Z und [mm] W\subseteq [/mm] Z.
Zeige: [mm] (g°f)^{-1}(W) [/mm] = [mm] f^{-1}(g^{-1}(W)) [/mm]

Hallo ich habe keine Ahnung wie ich bei der Aufgabe vorgehen muss? Kann mir jemand helfen?

Lg Tanja

        
Bezug
Funktionen-Umkehrfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 19:42 Mo 07.05.2007
Autor: angela.h.b.


> gegeben: f: [mm]X\to[/mm] Y und g: Y [mm]\to[/mm] Z und [mm]W\subseteq[/mm] Z.
>  Zeige: [mm](g°f)^{-1}(W)[/mm] = [mm]f^{-1}(g^{-1}(W))[/mm]

Hallo,

zunächst mußt Du Dir klarmachen, was mit [mm] h^{-1}(C) [/mm] gemeint ist,
wenn h: A -->B   und C [mm] \subseteq [/mm] B.

Die Aussage beinhaltet zweierlei:

1. [mm] (g°f)^{-1}(W)[/mm] \subseteq[/mm]  [mm]f^{-1}(g^{-1}(W)) 2. f^{-1}(g^{-1}(W))[/mm] [mm] \subseteq[/mm]  [mm](g°f)^{-1}(W)[/mm]

Ich finde es am einfachsten, so etwas elementweise zu zeigen.

Du nimmst also für 1. an, daß [mm] x\in (g°f)^{-1}(W) [/mm] und zeigst, wie daraus folgt, daß [mm] x\in f^{-1}(g^{-1}(W)) [/mm]

Für 2. umgekehrt.

Gruß v. Angela

Bezug
                
Bezug
Funktionen-Umkehrfunktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:52 Di 08.05.2007
Autor: Tanja1985

hallo, ich habe die idee soweit verstanden allerdings weiß ich nicht wie ich das genau zeigen soll, dass wenn x in dem einen liegt es auch in dem anderen liegt?

lg tanja

Bezug
                        
Bezug
Funktionen-Umkehrfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 10:07 Di 08.05.2007
Autor: MicMuc

Du willst doch Lehrerin werden.
Male Dir doch zuerst einmal für

g: Y $ [mm] \to [/mm] $ Z und $ [mm] W\subseteq [/mm] $ Z und [mm] $g^{-1}(W)$ [/mm]

ein Schaubild.

$y [mm] \in g^{-1}(W) \gdw [/mm] g(y) [mm] \in [/mm] W$ kann man übrignes auch noch schön "farbig" im Schaubild darstellen ...


Jetzt erweiterst Du das "Ganze" auf die Situation der Verkettung zweier Abbildungen ...

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]