matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-FinanzmathematikFunktionale Indifferenz
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Finanzmathematik" - Funktionale Indifferenz
Funktionale Indifferenz < Finanzmathematik < Finanz+Versicherung < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Finanzmathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Funktionale Indifferenz: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 17:32 Mi 27.05.2009
Autor: el.titeritero

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Leider bin ich kein Mathematiker. Deshalb bitte ich schon jetzt um Verzeihung für eine ggf. unsaubere Formulierung meines mathematischen Problems. Danke.

Das Problem:

Gegeben sei eine diskrete Zufallsvariable X mit den Ausprägungen [mm] x_{i} [/mm] und zugehöriger Eintrittswahrscheinlichkeit [mm] \pi_{i}. [/mm]

Außerdem sei f(x) eine in x streng monoton steigende Funktion mit f´(x)>0 und f´´(x)<0, wie beispielsweise: [mm] f(x)=\wurzel{x}. [/mm]

Es gelte: f(X) = [mm] \summe_{i=1}^{n}(f(x_{i})*\pi_{i}) [/mm]

Weiterhin sei eine Funktion g(m,v) gegeben, wobei:

m = [mm] \summe_{i=1}^{n}(x_{i}*\pi_{i}), [/mm] also das arithmetische Mittel von X und
v  = [mm] \summe_{i=1}^{n}((x_{i}-m)^2*\pi_{i}), [/mm] also die Varianz von X sei.


Ich möchte nun zeigen, für welche funktionalen Zusammenhänge von f(x), die Funktion g(m,v) indifferent bis auf monoton steigende Transformationen ist (bzw.: inwiefern beide Funktionen auf Ordinalskalenniveau für X zum selben Ergebnis führen).

Erweiterungsfrage 1: Kann eine gegebenenfalls existierende Lösung auf stetige Zufallsvariablen erweitert werden?

Erweiterungsfrage 2: Kann eine gegebenenfalls existierende Lösung auch auf Fälle verallgemeinert werden, in denen f(x) eine beliebige monotone Funktion in x darstellt?

Ich bin sehr auf etwaige Lösungsvorschläge gespannt.
Vielen Dank im Voraus.

PS.: Eine Bitte noch: Es wäre nett, wenn ihr bei vorausgesetzter Kenntnis eines bestimmten Theorems/ Regel/ Lemma/ etc. den Fachbegriff dazuschreiben könntet, damit ich dieses ggf. nachlesen und so die Lösung nachvollziehen kann. Danke.

        
Bezug
Funktionale Indifferenz: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:21 Sa 27.06.2009
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Finanzmathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]