matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenFunktionaldeterminate
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Reelle Analysis mehrerer Veränderlichen" - Funktionaldeterminate
Funktionaldeterminate < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Funktionaldeterminate: Rechenhilfe
Status: (Frage) beantwortet Status 
Datum: 21:39 Mi 18.07.2007
Autor: JoeDoeIII

Aufgabe 1
Es soll die Funktionaldeterminate einer Koordinatentransformation berechnet weden

Aufgabe 2
Es soll die Funktionaldetermiante für  eine Kooidinatentransformation gegeben werden. Das Ergenis ist gegeben. Entweer verstehe ich es nicht, meine Lösung zum gegeben Ergenis umzuformen, oder ich habe mich völlig verrechnet.  

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

die Karthesischen Koordinaten sind in Polarkoo. gegeben

x = r cos   [mm] \gamma [/mm] sin [mm] \delta [/mm]

y = r sin   [mm] \gamma [/mm] sin [mm] \delta [/mm]

z = r cos [mm] \delta [/mm]


Die Funktionaldeterminate lautet

D(r, [mm] \gamma [/mm] , [mm] \delta [/mm] ) = [mm] \bruch{\partial (x,y,z)}{r, \gamma ,\delta } [/mm]


=  [mm] \vmat{ cos \gamma sin \delta & - r sin \gamma sin \delta & r cos \gamma cos \delta \\ sin \gamma sin \delta & r cos \gamma sin \delta & r sin \gamma cos \delta \\ cos \delta & 0 & - r sin \delta } [/mm]


OK, gegeben ist als Ergebnis : r² sin [mm] \delta [/mm]

Ich bekomme leider scheinbar völligen mist heraus. (habe die Determinante mit der regel von Sarrus berechnet) - obwohl ich eigentlich keinen fehler in der Determinante entdecke?

Mein Ergebnis :

(in der reihenfolge der 6 terme)


(1) -r² cos² [mm] \gamma [/mm] sin³ [mm] \delta [/mm]   (2) - r² sin² [mm] \gamma [/mm] cos² [mm] \delta [/mm] sin [mm] \delta [/mm] +(3) 0  (4) -  r² cos² [mm] \gamma [/mm] sin [mm] \delta [/mm] cos² [mm] \delta [/mm]  - (5) 0  (6) - r² sin² [mm] \gamma [/mm] sin³ [mm] \delta [/mm]


wäre wirklich ganz toll, wenn mir jemand weiterhelfen könnte. gruß, Joe





        
Bezug
Funktionaldeterminate: Antwort
Status: (Antwort) fertig Status 
Datum: 21:54 Mi 18.07.2007
Autor: Event_Horizon

Hallo!

Das sieht doch schon ganz gut aus!

Was du nun brauchst, ist sin²+cos²=1.

Fasse doch mal Term 1 und 6 zusammen, dann kannst du [mm] $r*sin^3(\delta)$ [/mm] ausklammern, und die Klammer ist gleich 1.

Gleiches gilt für die beiden anderen Terme.

Dann machst du das mit den zwei entstandenen Termen nochmal, und das wars.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]