matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenWahrscheinlichkeitstheorieFunktion von Zufallsvariablen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Wahrscheinlichkeitstheorie" - Funktion von Zufallsvariablen
Funktion von Zufallsvariablen < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Funktion von Zufallsvariablen: Aufgabe 1
Status: (Frage) beantwortet Status 
Datum: 18:49 Do 24.11.2011
Autor: Leon81

Aufgabe
Sei X eine Zufallsvariable mit Dichtefunktion
f(y)=λe^(-λy)
Es gelte außerdem
Y=r(X) mit [mm] r(X)=X^2 [/mm]
Wie sieht dann die Verteilung von Y aus?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Bitte um Hilfe bei dieser Aufgabe. Muss nächste Woche meinen Bachelorvortrag halten Bin neu hier und hoffe hier gibt es einige sehr gute Mathematiker.

Es gilt doch:
[mm] P(Y\le y)=P(X^2\le y)=P(X\le\wurzel{y}) [/mm]
Mit welcher Begründung komme ich dann auf den folgenden Term?
[mm] P(X\le \wurzel{y})= \integral_{-\infty}^{\wurzel{y}}{g(v) dv}= \integral_{0}^{\wurzel{y}}{\lambda e^{-\lambda v}}= -e^{-\lambda \wurzel{y}}+1 [/mm]

g ist hier die Verteilungsfunktion von Y.
Meine Frage ist, wieso man die Integralgrenze von [mm] -\infty [/mm] auf 0 setzen kann?
Außerdem ist mir nicht klar, warum man g wie f behandelt?

Kann womöglich den ganzen Weg mit f rechnen und am Ende dann substituieren?


        
Bezug
Funktion von Zufallsvariablen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:17 Do 24.11.2011
Autor: vivo

Hallo,

> Bitte um Hilfe bei dieser Aufgabe. Muss nächste Woche
> meinen Bachelorvortrag halten Bin neu hier und hoffe hier
> gibt es einige sehr gute Mathematiker.
>  
> Es gilt doch:
>  [mm]P(Y\le y)=P(X^2\le y)=P(X\le\wurzel{y})[/mm]

Achtung! Eigentlich ist es so:

[mm]P(Y\le y)=P(X^2\le y)=P(-\wurzel{y}\le X\le\wurzel{y})[/mm]

bezeichnen wir mit

[mm]F(y)=\int_{-\infty}^y f(y)dy[/mm] die Verteilungsfunktion von [mm]X[/mm]

und mit

[mm]f(y)=\lambda e^{(-\lambda y)} [/mm] die Dichte von [mm]X[/mm]

dann

[mm]P( - \wurzel{y} \le X \le \wurzel{y}) = \int_{- \wurzel{y}}^ {\wurzel{y}}f(y)dy [/mm]

da wir hier über eine Exponentialverteilung reden, für welche sowohl die Dichte und (deshalb) auch die Verteilungsfunktion 0 sind für [mm]x < 0 [/mm] ist:

[mm]\int_{- \wurzel{y}}^ {\wurzel{y}}f(y)dy= \int_{0}^ {\wurzel{y}}f(y)dy [/mm]



>  Mit welcher
> Begründung komme ich dann auf den folgenden Term?
>  [mm]P(X\le \wurzel{y})= \integral_{-\infty}^{\wurzel{y}}{g(v) dv}= \integral_{0}^{\wurzel{y}}{\lambda e^{-\lambda v}}= -e^{-\lambda \wurzel{y}}+1[/mm]
>  
> g ist hier die Verteilungsfunktion  

Achtung siehe oben!

> von Y.
>  Meine Frage ist, wieso man die Integralgrenze von [mm]-\infty[/mm]
> auf 0 setzen kann?
>  Außerdem ist mir nicht klar, warum man g wie f
> behandelt?
>  
> Kann womöglich den ganzen Weg mit f rechnen und am Ende
> dann substituieren?
>  


Bezug
                
Bezug
Funktion von Zufallsvariablen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:10 Fr 25.11.2011
Autor: Leon81

Hallo.

Ich danke für die schnelle Antwort. Habe auch das Problem verstanden wieso man g wie f behandelt.
Allerdings habe ich noch eine Frage zu deiner Ausführung (s.u.).

Aber sonst 1A Erklärung.


> Hallo,
>  
> > Bitte um Hilfe bei dieser Aufgabe. Muss nächste Woche
> > meinen Bachelorvortrag halten Bin neu hier und hoffe hier
> > gibt es einige sehr gute Mathematiker.
>  >  
> > Es gilt doch:
>  >  [mm]P(Y\le y)=P(X^2\le y)=P(X\le\wurzel{y})[/mm]
>  
> Achtung! Eigentlich ist es so:
>  
> [mm]P(Y\le y)=P(X^2\le y)=P(-\wurzel{y}\le X\le\wurzel{y})[/mm]
>  
> bezeichnen wir mit
>
> [mm]F(y)=\int_{-\infty}^y f(y)dy[/mm] die Verteilungsfunktion von [mm]X[/mm]

Hat man nicht hier das Problem der Doppelbelegung der Variable y? Einmal ist das die obere Grenze des Integrals, zum anderen ist das die Laufvariable von f.

>  
> und mit
>  
> [mm]f(y)=\lambda e^{(-\lambda y)}[/mm] die Dichte von [mm]X[/mm]
>  
> dann
>  
> [mm]P( - \wurzel{y} \le X \le \wurzel{y}) = \int_{- \wurzel{y}}^ {\wurzel{y}}f(y)dy [/mm]
>  
> da wir hier über eine Exponentialverteilung reden, für
> welche sowohl die Dichte und (deshalb) auch die
> Verteilungsfunktion 0 sind für [mm]x < 0[/mm] ist:
>  
> [mm]\int_{- \wurzel{y}}^ {\wurzel{y}}f(y)dy= \int_{0}^ {\wurzel{y}}f(y)dy [/mm]
>  
>
>
> >  Mit welcher

> > Begründung komme ich dann auf den folgenden Term?
>  >  [mm]P(X\le \wurzel{y})= \integral_{-\infty}^{\wurzel{y}}{g(v) dv}= \integral_{0}^{\wurzel{y}}{\lambda e^{-\lambda v}}= -e^{-\lambda \wurzel{y}}+1[/mm]
>  
> >  

> > g ist hier die Verteilungsfunktion  
>
> Achtung siehe oben!
>  
> > von Y.
>  >  Meine Frage ist, wieso man die Integralgrenze von
> [mm]-\infty[/mm]
> > auf 0 setzen kann?
>  >  Außerdem ist mir nicht klar, warum man g wie f
> > behandelt?
>  >  
> > Kann womöglich den ganzen Weg mit f rechnen und am Ende
> > dann substituieren?
>  >  
>  

LG

Bezug
                        
Bezug
Funktion von Zufallsvariablen: Obere Grenze
Status: (Antwort) fertig Status 
Datum: 17:04 Fr 25.11.2011
Autor: Infinit

Hallo Leon81,
mit Deinem Kommentar hast Du recht. Es wird zwar, gerade bei den Ingenieuren, dies so gerne hingeschrieben, aber sauberer ist es, wenn man eine andere Integrationsvariable wählt. Dies ändert ja am Ergebnis nichts.
Also, etwas wie
[mm] F(y) = \int_{-\infty}^y f(u)\, du [/mm]
Dann ist es auch formal korrekt.
Viele Grüße,
Infinit


Bezug
                                
Bezug
Funktion von Zufallsvariablen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:34 Sa 26.11.2011
Autor: vivo

ups ...

aber natürlich!



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]