matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraFunktion richtig ?
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Lineare Algebra" - Funktion richtig ?
Funktion richtig ? < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Funktion richtig ?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:50 Fr 08.02.2008
Autor: SusanneK

Aufgabe
Sei [mm] f:M_{22}(\IR) [/mm] definiert durch [mm] f\pmat{a&b\\c&d}=\pmat{a&b+c&d\\b&a+d&a} [/mm]
Definieren Sie eine surjektive Abbildung [mm] g:Bild(f) \to \IR^2 [/mm]. Wählen Sie Basen B von Bild(f) und C von [mm] \IR^2 [/mm] und bestimmen Sie [mm] _BM_C(g) [/mm]

Ich habe diese Frage in keinem anderen Forum gestellt.

Guten Morgen.
Ich habe eine Lösung produziert, die sieht aber anders aus als die mitgelieferte Lösung, weil ich eine andere Funktion gewählt habe.
Meine surjektive Abbilgung g lautet:
[mm] g\pmat{a&b+c&d\\b&a+d&a}=\pmat{a\\b}[/mm]

Ist meine Funktion richtig ?

Danke, Susanne.

        
Bezug
Funktion richtig ?: Antwort
Status: (Antwort) fertig Status 
Datum: 16:14 Fr 08.02.2008
Autor: angela.h.b.


> Sei [mm]f:M_{22}(\IR)[/mm] definiert durch
> [mm]f\pmat{a&b\\c&d}=\pmat{a&b+c&d\\b&a+d&a}[/mm]
>  Definieren Sie eine surjektive Abbildung [mm]g:Bild(f) \to \IR^2 [/mm].
> Wählen Sie Basen B von Bild(f) und C von [mm]\IR^2[/mm] und
> bestimmen Sie [mm]_BM_C(g)[/mm]
>  Ich habe diese Frage in keinem anderen Forum gestellt.
>  
> Guten Morgen.
>  Ich habe eine Lösung produziert, die sieht aber anders aus
> als die mitgelieferte Lösung, weil ich eine andere Funktion
> gewählt habe.
>  Meine surjektive Abbilgung g lautet:
>  [mm]g\pmat{a&b+c&d\\b&a+d&a}=\pmat{a\\b}[/mm]
>  
> Ist meine Funktion richtig ?

Hallo,

ich kann nichts Falsches dran entdecken.

Die Abbildung, die Du definiert hast, geht von Bild f in den [mm] \IR^2, [/mm] sie ist wohldefiniert und surjektiv.

Hast Du irgendwelche Zweifel?

Gruß v. Angela

Bezug
                
Bezug
Funktion richtig ?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:09 Fr 08.02.2008
Autor: SusanneK

Hallo Angela,
naja - eigentlich nicht, aber in der Lösung wurde eine andere Abbildung benutzt und dadurch war die [mm] _BM_C(f) [/mm] anders - was wahrscheinlich logisch ist.
Und da morgen Klausur ist *stöhn* wollte ich noch alle Zweifel beseitigen.

Darf ich gerade noch eine Frage loswerden ?
Der Vektorraum der Polynome vom Grad [mm] \le [/mm] 2 hat der die Dimension 2 oder 3 ?

VIELEN VIELEN DANK !
LG, Susanne.

Bezug
                        
Bezug
Funktion richtig ?: Antwort
Status: (Antwort) fertig Status 
Datum: 19:03 Fr 08.02.2008
Autor: angela.h.b.


>  Der Vektorraum der Polynome vom Grad [mm]\le[/mm] 2 hat der die
> Dimension 2 oder 3 ?

Hallo,

der Vektorraum der reellen Polynome vom Höchstgrad 2  hat die Dimension 3.

Eine Basis ist [mm] (x^2, [/mm] x, 1), und das ist kein Wunder, wenn man sich mal überlegt, wie die Polynome vom Höchstgrad 2 aussehen: [mm] ax^2+bx+c. [/mm]

Ich wünsche Dir viel Erfolg bei der Klausur. Wo schreibst Du denn (falls es nicht geheim ist)?

Gruß v. Angela



Bezug
                                
Bezug
Funktion richtig ?: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:17 Fr 08.02.2008
Autor: SusanneK


>
> >  Der Vektorraum der Polynome vom Grad [mm]\le[/mm] 2 hat der die

> > Dimension 2 oder 3 ?
>  
> Hallo,
>  
> der Vektorraum der reellen Polynome vom Höchstgrad 2  hat
> die Dimension 3.
>  
> Eine Basis ist [mm](x^2,[/mm] x, 1), und das ist kein Wunder, wenn
> man sich mal überlegt, wie die Polynome vom Höchstgrad 2
> aussehen: [mm]ax^2+bx+c.[/mm]
>  
> Ich wünsche Dir viel Erfolg bei der Klausur. Wo schreibst
> Du denn (falls es nicht geheim ist)?
>  
> Gruß v. Angela

Hallo Angela,
vielen, vielen Dank für Deine Hilfe - wie so oft Retter in letzter Not !

Ich schreibe in Köln - und danke für Deine guten Wünsche, die kann ich gebrauchen ;-)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]