matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Komplexe AnalysisFunktion laut Bedingung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Komplexe Analysis" - Funktion laut Bedingung
Funktion laut Bedingung < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Funktion laut Bedingung: Korrektur
Status: (Frage) beantwortet Status 
Datum: 19:32 So 16.10.2011
Autor: Christiena

Aufgabe
Sei f eine ganze Funktion mit f(z)=f(2z) für alle z € C. Zeige, dass f(z) konstant ist.

Könnt ihr mal bitte gucken, ob mein Rechenweg so richtig ist? Habe schoneinmal eine ähnliche Frage gestellt und nun versucht eure Antworten hierauf anzuwenden.

Da f(z) ganz ist, lässt sie sich in eine Potenreihe entwickeln:

[mm] \summe_{i=1}^{n}a_{n}z^{n}=\summe_{i=1}^{n}a_{n}2^{n}z^{n} [/mm]
[mm] \Rightarrow \summe_{i=1}^{n}(a_{n}-a_{n}2^{n})z^{n}=0 [/mm]
Für n=0 folgt
[mm] a_{0}-a_{0}=0 \Rightarrow a_{0}= [/mm] a € [mm] \IC [/mm]

Für n=1 folgt:
[mm] (a_{0}-a_{0}) [/mm] + [mm] a_{1}-2a_{1}= a_{1}-2a_{1}= [/mm] 0
[mm] \Rightarrow a_{1}= [/mm] 0

Für n=2,3 ... erhält man auf gleichem Weg, dass [mm] a_{2}= a_{3}= a_{4}= [/mm] .... = 0

Daraus folgt: f(z)=a=const.

Ist das so in Ordnung?

Vielen Dank im Voraus




        
Bezug
Funktion laut Bedingung: Antwort
Status: (Antwort) fertig Status 
Datum: 19:42 So 16.10.2011
Autor: MathePower

Hallo Christiena,


> Sei f eine ganze Funktion mit f(z)=f(2z) für alle z € C.
> Zeige, dass f(z) konstant ist.
>  Könnt ihr mal bitte gucken, ob mein Rechenweg so richtig
> ist? Habe schoneinmal eine ähnliche Frage gestellt und nun
> versucht eure Antworten hierauf anzuwenden.
>
> Da f(z) ganz ist, lässt sie sich in eine Potenreihe
> entwickeln:
>
> [mm]\summe_{i=1}^{n}a_{n}z^{n}=\summe_{i=1}^{n}a_{n}2^{n}z^{n}[/mm]
>  [mm]\Rightarrow \summe_{i=1}^{n}(a_{n}-a_{n}2^{n})z^{n}=0[/mm]
> Für n=0 folgt
>  [mm]a_{0}-a_{0}=0 \Rightarrow a_{0}=[/mm] a € [mm]\IC[/mm]
>


Die Folgerung wird hier nicht ersichtlich.

Für n=0 ergibt sich doch:

[mm]a_{0}-a_{0}2^{0}=a_{0}*\left(1-2^{0}\right)[/mm]

Und da [mm]2^{0}=1[/mm] ist,  muß [mm]a_{0}[/mm] von 0 verschieden sein.


> Für n=1 folgt:
> [mm](a_{0}-a_{0})[/mm] + [mm]a_{1}-2a_{1}= a_{1}-2a_{1}=[/mm] 0
> [mm]\Rightarrow a_{1}=[/mm] 0
>  
> Für n=2,3 ... erhält man auf gleichem Weg, dass [mm]a_{2}= a_{3}= a_{4}=[/mm]
> .... = 0
>  

Für alle anderen n ist, [mm]2^{n} \not=1[/mm].
Daraus ergibt sich dann [mm]a_{n}=0[/mm].


> Daraus folgt: f(z)=a=const.
>
> Ist das so in Ordnung?
>
> Vielen Dank im Voraus
>


Gruss
MathePower  

Bezug
                
Bezug
Funktion laut Bedingung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:47 So 16.10.2011
Autor: Christiena

Also bist du mit meinem Endergebnis einverstanden? :)

Bezug
                        
Bezug
Funktion laut Bedingung: Antwort
Status: (Antwort) fertig Status 
Datum: 19:55 So 16.10.2011
Autor: MathePower

Hallo Christiena,

> Also bist du mit meinem Endergebnis einverstanden? :)


Mit den angebrachten Korrekturen, ja. [ok]


Gruss
MathePower

Bezug
                                
Bezug
Funktion laut Bedingung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:56 So 16.10.2011
Autor: Christiena

Das ist super! Dankeschön!! :)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]