matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegralrechnungFunktion integrieren
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Integralrechnung" - Funktion integrieren
Funktion integrieren < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Funktion integrieren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:34 Mi 22.02.2012
Autor: Amicus

[mm] f(x)=\bruch{4ln(x)+2}{x^2} [/mm]

[mm] F(x)=\bruch{2}{x}*[ln(x^2)+4-\bruch{1}{x^2}*(ln(x)+2)-\bruch{1}{x} [/mm]

Stimmt das, oder hab ich mich da vertan? Wenn's falsch sein sollte poste ich nochmal meine Zwischenschritte.

LG

        
Bezug
Funktion integrieren: Antwort
Status: (Antwort) fertig Status 
Datum: 20:45 Mi 22.02.2012
Autor: MathePower

Hallo Amicus,

> [mm]f(x)=\bruch{4ln(x)+2}{x^2}[/mm]
>  
> [mm]F(x)=\bruch{2}{x}*[ln(x^2)+4-\bruch{1}{x^2}*(ln(x)+2)-\bruch{1}{x}[/mm]
>  
> Stimmt das, oder hab ich mich da vertan? Wenn's falsch sein
> sollte poste ich nochmal meine Zwischenschritte.
>  


Leider hast Du Dich da vertan.


> LG


Gruss
MathePower

Bezug
                
Bezug
Funktion integrieren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:52 Mi 22.02.2012
Autor: Amicus

Also hier die Zwischenschritte:

Partielle Integration:

u'(x)=4  
[mm] v(x)=[ln(x)+2]*x^{-2} [/mm]
u(x)=4x
[mm] v(x)=-2x^{-3}*(ln(x)+2)*\bruch{1}{x} [/mm]

[mm] 4x*(ln(x)+2)*x^{-2}+\integral_{}^{}{\bruch{8}{x^3}*(ln(x)+2) dx} [/mm]

Stimmt es bis dahin?

Bezug
                        
Bezug
Funktion integrieren: Antwort
Status: (Antwort) fertig Status 
Datum: 21:05 Mi 22.02.2012
Autor: notinX

Hallo,

> Also hier die Zwischenschritte:
>  
> Partielle Integration:
>  
> u'(x)=4  

wenn Du 4 als $u'(x)$ wählst, muss [mm] $v(x)=\frac{4\ln x +2}{4x^2}$ [/mm] sein.

> [mm]v(x)=[ln(x)+2]*x^{-2}[/mm]
>  u(x)=4x
>  [mm]v(x)=-2x^{-3}*(ln(x)+2)*\bruch{1}{x}[/mm]

Wenn das die Ableitung von $v(x)$ sein soll, hast Du die Produktregel vergessen oder falsch angewendet.

>  
> [mm]4x*(ln(x)+2)*x^{-2}+\integral_{}^{}{\bruch{8}{x^3}*(ln(x)+2) dx}[/mm]
>  
> Stimmt es bis dahin?

Leider nein. Schreib die Funkion mal um, dann sollte es leichter fallen:
[mm] $f(x)=\frac{4\ln x+2}{x^2}=\frac{4\ln x}{x^2}+\frac{2}{x^2}$ [/mm]

Gruß,

notinX

Bezug
                                
Bezug
Funktion integrieren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:14 Mi 22.02.2012
Autor: Amicus

u'(x)=4  
[mm] v(x)=\bruch{ln(x)}{x^2}+\bruch{1}{2x^2} [/mm]
u(x)=4x
[mm] v'(x)=\bruch{1-2ln(x)}{x^3}+\bruch{1}{x^3} [/mm]

?

Bezug
                                        
Bezug
Funktion integrieren: Antwort
Status: (Antwort) fertig Status 
Datum: 21:28 Mi 22.02.2012
Autor: notinX


> u'(x)=4  
> [mm]v(x)=\bruch{ln(x)}{x^2}+\bruch{1}{2x^2}[/mm]
>  u(x)=4x

[ok]

>  [mm]v'(x)=\bruch{1-2ln(x)}{x^3}+\bruch{1}{x^3}[/mm]

[notok]

[mm] $\Rightarrow v'(x)=\bruch{1-2ln(x)}{x^3}{\color{red} - }\bruch{1}{x^3} [/mm]

>  
> ?

Das stimmt jetzt, aber ich bin nicht sicher, ob Dich das beim Integrieren weiter bringt.
Weißt Du, dass:
[mm] $\int(f(x)+g(x))\,\mathrm dx=\int f(x)\,\mathrm dx+\int g(x)\,\mathrm [/mm] dx$
gilt? Versuche das mal sinnvoll anzuwenden.

Gruß,

notinX

Bezug
                                                
Bezug
Funktion integrieren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:40 Mi 22.02.2012
Autor: Amicus

[mm] \bruch{4ln(x)}{x}+\bruch{2}{x}-\integral_{}^{}{\bruch{4}{x^2} dx}-\integral_{}^{}{\bruch{2ln(x)}{x^3} dx}-\integral_{}^{}{\bruch{1}{x^3} dx} [/mm]

Und dann noch die hinteren drei Glieder integrieren und fertig.

Bezug
                                                        
Bezug
Funktion integrieren: Antwort
Status: (Antwort) fertig Status 
Datum: 21:47 Mi 22.02.2012
Autor: notinX


>
> [mm]\bruch{4ln(x)}{x}+\bruch{2}{x}-\integral_{}^{}{\bruch{4}{x^2} dx}-\integral_{}^{}{\bruch{2ln(x)}{x^3} dx}-\integral_{}^{}{\bruch{1}{x^3} dx}[/mm]
>  
> Und dann noch die hinteren drei Glieder integrieren und
> fertig.

Wie Du darauf kommst verstehe ich nicht...
[mm] $\int f(x)\,\mathrm{d}x=\int\left(\frac{4\ln x+2}{x^2}\right)\,\mathrm{d}x=\int\frac{4\ln x}{x^2}\,\mathrm{d}x+\int\frac{2}{x^2}\,\mathrm{d}x$ [/mm]
Das letzte Integral sollte kein Prioblem sein, und erste kannst Du mit der Wahl [mm] $u(x)=4\ln [/mm] x$ und [mm] $v'(x)=\frac{1}{x^2}$ [/mm] lösen.

Gruß,

notinX

Bezug
        
Bezug
Funktion integrieren: Antwort
Status: (Antwort) fertig Status 
Datum: 21:34 Mi 22.02.2012
Autor: Blech

Hi,

wenn ich noch meinen Senf dazugeben darf.

Ich denke die einfachste Zerlegung ist

$ [mm] f(x)=\bruch{4ln(x)+2}{x^2} =\underbrace{4\ln(x)+2}_{=: u(x)} [/mm] * [mm] \underbrace{\frac 1{x^2}}_{=: v'(x)}$ [/mm]

ciao
Stefan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]