matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare GleichungssystemeFunktion durch LGS bestimmen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Lineare Gleichungssysteme" - Funktion durch LGS bestimmen
Funktion durch LGS bestimmen < Gleichungssysteme < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Funktion durch LGS bestimmen: Tipp
Status: (Frage) beantwortet Status 
Datum: 20:27 Sa 24.01.2009
Autor: juel

Aufgabe
Der Graph der Funktion   f(x) = ax³ + bx² + cx + d   gehe durch die Punkte

(-1,0) , (0,1) , (1,4) , (2,15).  Bestimmen Sie die Funktion. Stellen Sie dazu ein

passendes lineares Gleichungssystem auf und lösen Sie es.

hallo zusammen

ich weiß nicht genau wie ich hier vorgehen soll. Die Funtion habe ich zunächst so aufgestellt

  ( a  b  c  d )  *  [mm] \vektor{x³ \\ x² \\ x \\ 1} [/mm]

aber das funktionier nicht, da sich die einzelne Punkte in der Aufgabenstellung als eine  2 [mm] \times [/mm] 4  Matrix schreiben lässt, hier kommt aber eine 1 [mm] \times [/mm] 1 Matrix raus.

Muss ich die Matrix vielleicht so umstellen

[mm] \pmat{ a & b & c & d \\ a & b & 0 & 0 \\ a & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 } [/mm]

und die andere so   [mm] \vektor{x \\ x \\ x \\ 1} [/mm]

ist meine Denkweise falsch??


        
Bezug
Funktion durch LGS bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:31 Sa 24.01.2009
Autor: Kroni

Hi,

nehmen wir uns doch mal den ersten Punkt zB her:

(-1,0)

Jetzt wissen wir, dass f(x=-1)=0 ist.

Nun hast du ja auch dein Polynom [mm] $f(x)=ax^3+bx^2+cx+d$ [/mm] gegeben.

Da du ja weist, dass [mm] $f(x=-1)=a\cdot (-1)^3+...=0$ [/mm] gilt, hast du schon eine Gleichung für a,b,c und d aufgestellt. Jetzt das selbe Spielchen mit allen anderen Punkten auch machen. Dann hast du ein schönes linears Gleichungssystem da stehen, was du mit den dir bekannten Verfahren lösen kannst.

LG

Kroni

Bezug
                
Bezug
Funktion durch LGS bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:48 Sa 24.01.2009
Autor: juel

wenn ich das richtig verstanden habe,  habe ich das heraus bekommen

[mm] \pmat{ -a & b & -c &d | 0 \\ 0 & 0 & 0 & d | 1 \\ a & b & c & d | 4 \\ 8a & 4b & 2c & d | 15 } [/mm]

stimmt das?

Bezug
                        
Bezug
Funktion durch LGS bestimmen: Korrektur
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:19 So 25.01.2009
Autor: juel

kann mir bitte jemand die obige Lösung korregieren?

meine Frage wäre noch, wenn ich nach x auflöse, habe ich ja noch die a,b,c,d Variablen, wie soll ich nach denen auflösen?
In der Aufgabenstellung steht ich muss die Funktion bestimmen.

kann mir bitte jemand Hilfestellung geben.

Bezug
                        
Bezug
Funktion durch LGS bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 14:03 So 25.01.2009
Autor: Zwerglein

Hi, juel,

> wenn ich das richtig verstanden habe,  habe ich das heraus
> bekommen
>  
> [mm]\pmat{ -a & b & -c &d | 0 \\ 0 & 0 & 0 & d | 1 \\ a & b & c & d | 4 \\ 8a & 4b & 2c & d | 15 }[/mm]
>  
> stimmt das?

Nein!

Bedenke bitte: a, b, c und d sind Deine Unbekannten!
Die schreibt man bei der Matrixschreibweise des Gauß-Verfahrens nicht in die Matrix rein!

Daher:
[mm]\pmat{ -1 & 1 & -1 & 1 | 0 \\ 0 & 0 & 0 & 1 | 1 \\ 1 & 1 & 1 & 1 | 4 \\ 8 & 4 & 2 & 1 | 15 }[/mm]

und nun auf üblich Art umformen (wobie Du am besten die zweite Zeile ganz ans Ende schreibst: Aus der ergibt sich ja sowieso sofort, dass d=1 sein muss!

Also: [mm]\pmat{ -1 & 1 & -1 & 1 | 0 \\ 1 & 1 & 1 & 1 | 4 \\ 8 & 4 & 2 & 1 | 15 \\ 0 & 0 & 0 & 1 | 1}[/mm]

Schaffst Du's nun?

mfG!
Zwerglein


Bezug
                                
Bezug
Funktion durch LGS bestimmen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:13 So 25.01.2009
Autor: juel

ach ja, okay
dann vesuch ich das jetzt mal zu rechnen

vielen dank

Bezug
                                
Bezug
Funktion durch LGS bestimmen: Korrektur
Status: (Frage) beantwortet Status 
Datum: 14:34 So 25.01.2009
Autor: juel

ich hab das jetzt ausgerechnet und habe das hier raus bekommen


[mm] \pmat{ 1 & 0 & 0 & 0 | 0 \\ 0 & 1 & 0 & 0 | 1 \\ 0 & 0 & 1 & 0 | 1 \\ 0 & 0 & 0 & 1 | 1 } [/mm]


kann das sein??

dann würde ich diese Funktion raus bekommen

  f(x) = x³ + x² + x +1


oder habe ich wieder was falsch berechnet.  :-(

Bezug
                                        
Bezug
Funktion durch LGS bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 14:41 So 25.01.2009
Autor: M.Rex


> ich hab das jetzt ausgerechnet und habe das hier raus
> bekommen
>  
>
> [mm]\pmat{ 1 & 0 & 0 & 0 | 0 \\ 0 & 1 & 0 & 0 | 1 \\ 0 & 0 & 1 & 0 | 1 \\ 0 & 0 & 0 & 1 | 1 }[/mm]
>  
>
> kann das sein??
>  
> dann würde ich diese Funktion raus bekommen
>  
> f(x) = x³ + x² + x +1
>  
>
> oder habe ich wieder was falsch berechnet.  :-(


Das ist korrekt. Aber du kannst ja auch die Probe machen, und prüfen, ob dioe Bedingungen erfüllt sitnd, was hier der Fall ist.

Also
f(0)=1
f(-1)=0
f(1)=4
f(2)=15

Marius


Bezug
                                                
Bezug
Funktion durch LGS bestimmen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:00 So 25.01.2009
Autor: juel

super
vielen vielen dank

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]