matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenRationale FunktionenFunktion basteln
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Rationale Funktionen" - Funktion basteln
Funktion basteln < Rationale Funktionen < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Funktion basteln: schräge Asymptoten
Status: (Frage) beantwortet Status 
Datum: 17:47 Mi 13.06.2012
Autor: Uzaku

Aufgabe
Bestimmen Sie die gebrochen-rationale Funktion f(x) = p(x)
q(x) mit Polynomen p(x) und
q(x), deren Zählergrad 3 und deren Nennergrad 2 ist und die folgende Eigenschaften
besitzt:
(a) An der Stelle x = 2 befindet sich eine Nullstelle 2. Ordnung,
(b) an der Stelle x = 1 liegt eine Polstelle 2. Ordnung,
(c) y = x + 1 ist Asymptote.

Hey,
a) und b) stellen kein Problem da, aber ich komm trotz allem Kopfzerbrechen nicht auf die Lösung für c)

Mir selbst ist klar, dass zumindest das enthalten sein muss : [mm]\bruch{(x-2)^2}{(x-1)^2}[/mm] nun fehlt im Zähler noch ein Element, was dazu multipliziert werden muss, damit das ganze den Grad 3 hat im Zähler und die Asymptote. Laut Lösung ist das (x+3). Allerdings sehe ich den Zusammenhang zwischen dem *(x+3) und der sich dann ergebenden Asymptote von x+1 nicht. Ich habe folgenden Ansatz: [mm]\bruch{(x-2)^2 * k}{(x-1)^2} = x + 1 + \bruch{Irgendwas}{(x-1)^2}[/mm] Dummerweise komme ich nicht darauf, was irgendwas sein könnte. (Und was mich davon abhält für k (x+3) einzusetzen und das umzuformen, ist der Fakt, dass ich nicht weiß, wie Polynomdivision mit einem komplexeren Ausdruck als (x+a) funktioniert)

Gruß Uzaku

PS: Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Funktion basteln: Antwort
Status: (Antwort) fertig Status 
Datum: 18:02 Mi 13.06.2012
Autor: Diophant

Hallo,

zunächst muss dein k zwangsläufig ein linearer Term in x, also etwas in der Form x+a sein, denn sonst wäre die Forderung nicht erfüllt, dass der Zählergrad gleich 3 sein soll.

Die Polynomdivision durch [mm] (x-1)^2 [/mm] bewältigt man sehr leicht, indem man [mm] (x-1)^2=x^2-2x+1 [/mm] ausnutzt. Der UNterschied zu einer Division durch einen linearen Term ist etwa vergleichbar damit, ob du beim schriftlichen Dividieren durch eine zweistellige oder eine dreistellige Zahl dividierst.

Die gute Nachricht ist ja auch, dass man die Polynomdivision gar nicht zu Ende erechnen muss sondern nur soweit, bis man k so wählen kann, dass der konstante Summand im Ergebnis gleich 1 wird. Das sollte dir eigentlich weiterhelfen.


Gruß, Diophant

Bezug
                
Bezug
Funktion basteln: Lösung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:17 Mi 13.06.2012
Autor: Uzaku

Alles klar, danke für den Hinweis.

Wenn ich von [mm]\bruch{(x-2)^2*(x+k)}{(x-1)^2}[/mm] ausgehe, und das ausmultipliziere bin ich bei [mm](x^3 + (k-4)x^2 + (4-4k)x +4k):(x^2-2x+1)[/mm] und das Ergebnis ist im 2ten Schritt [mm] x + (k-2)[/mm] woraus sich ja ergibt [mm](k-2) = 1[/mm]
Und damit is dann ja alles klar.

gruß Uzaku

Bezug
                        
Bezug
Funktion basteln: Doch kein Fehler :-)
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:23 Mi 13.06.2012
Autor: Diophant

Hallo,

überprüfe den Vorfaktor von x im ausmultiplizierten Zähler nochmal. Meiner Ansicht nach müssten die Vorzeichen genau andersherum sein.

Sorry. das war Unsinn meinerseits: es passt alles. :-)


Gruß, Diophant

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]