matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-SonstigesFunktion als Minprobl. konkav?
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Analysis-Sonstiges" - Funktion als Minprobl. konkav?
Funktion als Minprobl. konkav? < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Funktion als Minprobl. konkav?: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 14:36 Mo 26.05.2014
Autor: EvelynSnowley2311

Aufgabe
Sei $f(t) := min [mm] \{t^T x : Ax = b , x\ge 0 \}$ [/mm]  Zeigen sie durch geeignete Fallunterscheidung die Konkavität von f. (Hinweis: Ist f konkav, dann ist -f konvex)

Hallo zusammen!

Also ich schildere erst einmal einen Fall, um zu prüfen ob das in ordnung geht. Zur Übersicht setzte ich

$Ax =b, [mm] x\ge [/mm] 0$ als $K$ .

Nun bedeutet Konkav, dass für bel. [mm] t_1 [/mm] , [mm] t_2 [/mm] gilt: [mm] (\lambda \in [/mm] [0,1])

[mm] $\lambda f(t_1) [/mm] + [mm] (1-\lambda) f(t_2) \le [/mm] f( [mm] \lambda t_1 [/mm] + (1- [mm] \lambda) t_2)$ [/mm]




Betrachten wir den fall, dass [mm] t_1 [/mm] sowie [mm] t_2 [/mm] größer gleich 0 sind:

$f( [mm] \lambda t_1 [/mm] + (1- [mm] \lambda) t_2)$ [/mm]

= $min [mm] \{(\lambda t_1 + (1- \lambda) t_2)^T x: K\}$ [/mm]

Aufgrund der Eigenschaft des Skalar müsste gelten:

= $min [mm] \{(\lambda t_1)^T x + ((1- \lambda) t_2)^T x: K\}$ [/mm]


Da [mm] t_1 [/mm] sowie [mm] t_2 [/mm] größer gleich 0 sind und der faktor davor auch gilt denke ich dass das


[mm] \ge [/mm] (ich denke sogar genau =) [mm] $min\{(\lambda t_1)^T x: K\}$ [/mm] + [mm] $min\{((1- \lambda) t_2)^T x: K\}$ [/mm]

Noch die Faktoren davor rausziehen da es konstanten sind und dann wars das.  Ist der Fall so richtig? Folgen wohl noch [mm] t_1 [/mm] , [mm] t_2 [/mm] <0 sowie [mm] t_1 [/mm] < 0 < [mm] t_2 [/mm] und [mm] t_2 [/mm] < 0 [mm]

Lieben Gruß,

Eve

        
Bezug
Funktion als Minprobl. konkav?: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:20 Mi 28.05.2014
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]