matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferentiationFunktion ableiten
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Differentiation" - Funktion ableiten
Funktion ableiten < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Funktion ableiten: Ableiten
Status: (Frage) beantwortet Status 
Datum: 18:52 Fr 19.11.2010
Autor: Robbe7

Aufgabe
Leiten Sie f(x)=f(4-8x) nach x ab!

Hallo,

muss die folgende Gleichung nach x ableiten:

f(x)=f(4-8x) Anmerkung: der rechtsseitige Term ist kein Produkt sondern eine Funktion, also f von 4-8x


[mm] \frac{df(x)}{dx}= [/mm] ???

Ich würde hier die Kettenregel anwenden:

Kettenregel: f(x)=g(h(x))=> f'(x)=h'(x)*g'(h(x))

innere h(x)und äußere g(x) Ableitung bestimmen:

h(x)=4-8x => h'(x)=-8

Jetzt weiß ich schon nicht mehr weiter, was ist g(x)???

Kann mir jemand helfen?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

        
Bezug
Funktion ableiten: Antwort
Status: (Antwort) fertig Status 
Datum: 18:57 Fr 19.11.2010
Autor: schachuzipus

Hallo Robbe7,

> Leiten Sie f(x)=f(4-8x)

Das ist ja eine komische Schreibweise ...

> nach x ab!
> Hallo,
>
> muss die folgende Gleichung nach x ableiten:
>
> f(x)=f(4-8x) Anmerkung: der rechtsseitige Term ist kein
> Produkt sondern eine Funktion, also f von 4-8x
>
>
> [mm]\frac{df(x)}{dx}=[/mm] ???
>
> Ich würde hier die Kettenregel anwenden:
>
> Kettenregel: f(x)=g(h(x))=> f'(x)=h'(x)*g'(h(x))
>
> innere h(x)und äußere g(x) Ableitung bestimmen:
>
> h(x)=4-8x => h'(x)=-8
>
> Jetzt weiß ich schon nicht mehr weiter, was ist g(x)???

Einfach [mm]g=f[/mm]

Die gesuchte Ableitung ist [mm]-8\cdot{}f'(4-8x)[/mm]

Über f ist ja nix näheres bekannt ...

>
> Kann mir jemand helfen?
>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt

Gruß

schachuzipus


Bezug
                
Bezug
Funktion ableiten: Ableiten
Status: (Frage) beantwortet Status 
Datum: 19:19 Fr 19.11.2010
Autor: Robbe7

Aufgabe
Leiten Sie f(x)=f(4-8x) nach x ab!

Mhmmm, verstehe ich nicht...

du sagst, dass g(x)= f ist!

dann wäre g'(x)=0 , da ja kein x da ist.

somit wäre f'(x)=0, und nicht $ [mm] -8\cdot{}f'(4-8x) [/mm] $  





Bezug
                        
Bezug
Funktion ableiten: Antwort
Status: (Antwort) fertig Status 
Datum: 19:49 Fr 19.11.2010
Autor: Marcel

Hallo,

> Leiten Sie f(x)=f(4-8x) nach x ab!
>  Mhmmm, verstehe ich nicht...
>  
> du sagst, dass g(x)= f ist!
>  
> dann wäre g'(x)=0 , da ja kein x da ist.
>  
> somit wäre f'(x)=0, und nicht [mm]-8\cdot{}f'(4-8x)[/mm]  

nein. Schachuzipus meinte sicherlich, Du solltest
$$g(x):=f(4-8x)$$
für alle (relevanten) [mm] $x\,$ [/mm] setzen. Denn für gegebene Funktion [mm] $f\,$ [/mm] liefert Dir
$$f(x)=f(4-8x)$$
(meist?) "nur" eine Gleichung (in [mm] $x\,$). [/mm] Beispielsweise würde aus [mm] $f(x)=f(4-8x)\,,$ [/mm] wenn [mm] $f(x)=x^2$ [/mm] wäre, dann [mm] $x^2=(4-8x)^2$ [/mm] folgen (wie man diese lösen würde, weist Du sicher: pq-Formel).

Das ist hier aber sicher nicht gemeint. Gemeint ist eher:
Wenn [mm] $f(x)=x^2\,$ [/mm] gegeben ist, so sollst Du nicht "die Funktion [mm] $f(x)\,$", [/mm] sondern "die Funktion [mm] $g(x)=f(4-8x)\equiv:f(h(x))=(f \circ [/mm] h)(x)$ ableiten.

Also genauer:
Sei [mm] $f(x)\,$ [/mm] gegeben (und [mm] $f'(x)\,$ [/mm] sei (ohne diesen Term wirklich konkret anzugeben) berechenbar) und sei $g(x):=f(4-8x)=f(h(x))$ mit [mm] $h(x):=4-8x\,.$ [/mm] Wie sieht dann [mm] $g'(x)\,$ [/mm] aus (Tipp: Kettenregel).

Falls es immer noch unklar ist, machen wir es mal an einem Beispiel:
Sei bspw. [mm] $f(x)=\sin(x)\,.$ [/mm] Wie sieht dann [mm] $g'(x)\,$ [/mm] aus, wenn $g(x):= [mm] \sin(4-8x)$? [/mm]

Mit der KETTENREGEL und wegen [mm] $\blue{f'(h)=\cos(h)}$ [/mm] (also [mm] $\blue{f'(h(x))=\cos(h(x))}=\cos(4-8x)$) [/mm] und [mm] $\red{h'(x)=-8}$ [/mm] folgt hier
[mm] $$g'(x)=\blue{\cos(h(x))}*\red{(-8)}=\red{-8}*\cos(4-8x)\,.$$ [/mm]

Wenn Du nun anstatt [mm] $\cos(h(x))=\cos(4-8x)$ [/mm] einfach $f'(h(x))$ schreibst, sollte Dir klar sein, wie die Formel für "allgemeines [mm] $f\,$" [/mm] aussieht.
(Also: Du kannst das Symbol [mm] $f'\,$ [/mm] in der Endformel verwenden, ohne wirklich zu wissen, wie der Term [mm] $f'(x)\,$ [/mm] "konkret aussieht". Allerdings kannst Du durchaus $f'(h(x))=f'(4-8x)$ schreiben, und auch [mm] $h'(x)=-8\,$ [/mm] benützen.)

Beste Grüße,
Marcel

Bezug
                                
Bezug
Funktion ableiten: Ableiten
Status: (Frage) beantwortet Status 
Datum: 20:07 Fr 19.11.2010
Autor: Robbe7

dann wäre g'(x)= f'(4-8x) und h'(x)=-8!

f'(x)=h'(x)*g'(x))
      =-8*f'(4-8x)


Okay danke


Bezug
                                        
Bezug
Funktion ableiten: Antwort
Status: (Antwort) fertig Status 
Datum: 20:12 Fr 19.11.2010
Autor: schachuzipus

Hallo nochmal,


> dann wäre g'(x)= f'(4-8x) und h'(x)=-8!
>  
> f'(x)=h'(x)*g'(x))
>        =-8*f'(4-8x) [ok]

So steht's auch in der ersten Antwort ...

>
>
> Okay danke
>  

LG

schachuzipus


Bezug
                                        
Bezug
Funktion ableiten: Antwort
Status: (Antwort) fertig Status 
Datum: 09:03 Mo 22.11.2010
Autor: Marcel

Hallo,

> dann wäre [mm] $\red{g'(x)}= [/mm] f'(4-8x)$

nein. $g'(x)=f'(h(x))*h'(x)$ gilt ja nach der Kettenregel (es war [mm] $g(x):\equiv [/mm] (f [mm] \circ [/mm] h)(x)$ per Definitionem). Was Du meinst, ist, dass [mm] $f'(h(x))=f'(4-8x)\,$ [/mm] ist. Evtl. ist das nur ein Vertipper Deinerseits?!

> und h'(x)=-8!

  

> [mm] $\red{f}'(x)=h'(x)*\red{g}'(\red{x}))$ [/mm]

Auch hier sind die rot markierten Stellen fehlerhaft. Korrekt wäre

[mm] $$g'(x)=h'(x)*f'(h(x))=\ldots$$ [/mm]

>       [mm] $\ldots$ [/mm] =-8*f'(4-8x)
>
>
> Okay danke

Gerne.

Viele Grüße,
Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]