matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionenFunktion, Verständnisfrage
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Funktionen" - Funktion, Verständnisfrage
Funktion, Verständnisfrage < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Funktion, Verständnisfrage: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:39 Di 05.11.2013
Autor: Fortune1895

Aufgabe
Für Teilmengen A, B [mm] \subset \IR [/mm] sei
f : A [mm] \to [/mm] B , x [mm] \mapsto \begin{cases} x, & \mbox{:} x \ge \mbox{0} \\ -1/2x, & \mbox{:} x < \mbox{0} \end{cases} [/mm]

In welchen der folgenden Fälle ist f injektiv, surjektiv, bijektiv? Formulieren Sie jeweils eine Behauptung für die drei Eigenschaften und beweisen Sie diese:

a) A:= |0,1| und B:=|0,1|
b) A:= |0,1| und B:=|-1,1|
c) A:= |-1,1| und B:=|0,1|
d) A:= |-1,1| und B:=|-1,1|


Hallo zusammen,

mir geht es vorrangig vorallem um das Verständniss der Fragestellung. Ich verstehe nicht ganz, was die Fallweise Definition hinter der Funktion bedeutet.
Meint dies, dass ein Funktionswert größer gleich Null auf sich selbst abgebildet wird und einer kleiner null auf sein -1/2-fache?
Wäre dem so, dann würde doch keine der Aufgabenteile mit -1 in der Menge auf einen anderen Wert als 0,5 abgebildet werden. Und dieser Wert existiert doch nicht einmal in irgendeinem B.

Desweiteren frage ich mich, von welcher Form die Behauptung sein soll. Soll ich hier einfach bijektivität annehmen, wo sie gegeben ist und diese dann beweisen?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Vielen Dank im Vorraus,

Dennis

        
Bezug
Funktion, Verständnisfrage: Antwort
Status: (Antwort) fertig Status 
Datum: 11:46 Di 05.11.2013
Autor: fred97


> Für Teilmengen A, B [mm]\subset \IR[/mm] sei
>  f : A [mm]\to[/mm] B , x [mm]\mapsto \begin{cases} x, & \mbox{:} x \ge \mbox{0} \\ -1/2x, & \mbox{:} x < \mbox{0} \end{cases}[/mm]
>  
> In welchen der folgenden Fälle ist f injektiv, surjektiv,
> bijektiv? Formulieren Sie jeweils eine Behauptung für die
> drei Eigenschaften und beweisen Sie diese:
>  
> a) A:= |0,1| und B:=|0,1|
>  b) A:= |0,1| und B:=|-1,1|
>  c) A:= |-1,1| und B:=|0,1|
>  d) A:= |-1,1| und B:=|-1,1|
>  Hallo zusammen,
>  
> mir geht es vorrangig vorallem um das Verständniss der
> Fragestellung. Ich verstehe nicht ganz, was die Fallweise
> Definition hinter der Funktion bedeutet.
>  Meint dies, dass ein Funktionswert größer gleich Null
> auf sich selbst abgebildet wird und einer kleiner null auf
> sein -1/2-fache?


Es bedeutet:

ist x [mm] \ge [/mm] 0, so ist f(x)=x und ist x<0, so ist [mm] f(x)=-\bruch{1}{2}x [/mm]


>  Wäre dem so, dann würde doch keine der Aufgabenteile mit
> -1 in der Menge auf einen anderen Wert als 0,5 abgebildet
> werden. Und dieser Wert existiert doch nicht einmal in
> irgendeinem B.

Was ist los ?

Nehmen wir c)  sei x [mm] =-\bruch{1}{2}. [/mm] Dann ist f(x)=1/4 [mm] \in [/mm] B.


>  
> Desweiteren frage ich mich, von welcher Form die Behauptung
> sein soll. Soll ich hier einfach bijektivität annehmen, wo
> sie gegeben ist und diese dann beweisen?

Das verstehe ich nicht !

FRED

>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  
> Vielen Dank im Vorraus,
>  
> Dennis


Bezug
                
Bezug
Funktion, Verständnisfrage: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:56 Di 05.11.2013
Autor: Fortune1895


> Es bedeutet:
>
> ist x [mm]\ge[/mm] 0, so ist f(x)=x und ist x<0, so ist [mm]f(x)=-\bruch{1}{2}x[/mm]



Okay, ich glaube das verstanden zu haben.



> Nehmen wir c)  sei x [mm]=-\bruch{1}{2}.[/mm] Dann ist f(x)=1/4 [mm]\in[/mm] B.


Hier haperts bei mir dann wieder. A besteht aus -1 und 1 . Für -1 bilde ich doch auf -1/2 * -1 ab. Das ergibt 1/2. Für die 1 bilde ich auf 1 ab. Woher kommt das 1/4. Und vorallem ist 1/4 doch gar kein Element von B, oder?

Wahrscheinlich spielt sich mein restliches Problem mit dem Beweis auch nur in der Verständniss der Aufgabe wieder.

Vielen Dank schon einmal, für die nette Hilfe.

Dennis



Bezug
                        
Bezug
Funktion, Verständnisfrage: Antwort
Status: (Antwort) fertig Status 
Datum: 12:12 Di 05.11.2013
Autor: fred97

Du scheiterst an Deiner eigenen Schreibweise.

Mit |-1,1| ist nicht die Menge [mm] \{-1,1\} [/mm] gemeint, sondern das Intervall

[mm] [-1,1]=\{x \in \IR: -1 \le x \le 1\} [/mm]


FRED

Bezug
                                
Bezug
Funktion, Verständnisfrage: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:28 Di 05.11.2013
Autor: Fortune1895

Danke Fred.
Da hatte ich wohl ein großes Brett vor dem Kopf. So macht das natürlich alles Sinn.
Danke Dir für die Hilfe.

Dennis

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]