matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-SonstigesFunktion
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Sonstiges" - Funktion
Funktion < Sonstiges < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:36 Fr 07.01.2011
Autor: Ice-Man

Hallo,

ich habe bitte mal eine Frage.

In meiner angehangenen Skizze habe ich "versucht eine quadratische Parabel" bis zum Scheitelpunkt (t 3 ) zu skizzieren.

Jetzt sollte ich die Fuktion bestimmen, die die "Skizze beschreibt".
Da habe ich als Lösung gegeben,

[mm] \bruch{Q}{(t2-t3)^{2}}*(t-t3)^{2} [/mm]

Nur leider verstehe ich nicht, wie man zu diesem Ergebnis kommt. Kann mir das evtl. mal jemand bitte erklären?

Danke


Dateianhänge:
Anhang Nr. 1 (Typ: jpg) [nicht öffentlich]
        
Bezug
Funktion: Gleichungssystem
Status: (Antwort) fertig Status 
Datum: 11:51 Fr 07.01.2011
Autor: Roadrunner

Hallo Ice-Man!

Es gilt hier allgemein:

$q(t) \ = \ [mm] A*t^2+B*t+C$ [/mm]

Anhand der Zeichnung kann man erkennen (bzw. erahnen), dass gilt:

[mm] $q(t_2) [/mm] \ = \ Q$

[mm] $q(t_3) [/mm] \ = \ 0$

[mm] $q'(t_3) [/mm] \ = \ 0$

Nun stelle das entsprechende Gleichungssystem auf.


Gruß vom
Roadrunner


Bezug
                
Bezug
Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:40 Fr 07.01.2011
Autor: Ice-Man

Hallo nochmal,

sorry, aber ich habe nicht so wirklich die Ahnung was du genau meinst.

Den Gedanken mit der "Normalform" hat ich auch schon, aber ich weis nicht wie du das meinst, mit dem "Gleichungssystem" aufstellen.

Kannst du mir das evtl. nochmal ein wenig einfacher erklären?

Das wäre wirklich freundlich.
Danke schonmal.



Bezug
                        
Bezug
Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 10:15 Sa 08.01.2011
Autor: fred97


> Hallo nochmal,
>  
> sorry, aber ich habe nicht so wirklich die Ahnung was du
> genau meinst.
>  
> Den Gedanken mit der "Normalform" hat ich auch schon, aber
> ich weis nicht wie du das meinst, mit dem
> "Gleichungssystem" aufstellen.
>  
> Kannst du mir das evtl. nochmal ein wenig einfacher
> erklären?

Ich versuche es:

Du hast:

$ q(t) \ = \ [mm] A\cdot{}t^2+B\cdot{}t+C [/mm] $

Diese Funktion schneidet die q - Achse in [mm] (t_2|Q), [/mm]

somit gilt:

   (1)  $ Q \ = \ [mm] A\cdot{}t_2^2+B\cdot{}t_2+C [/mm] $.

Die Parabel hat ihren Scheitel in [mm] (t_3|0), [/mm] also

   (2) $ 0 \ = \ [mm] A\cdot{}t_3^2+B\cdot{}t_3+C [/mm] $

und, wegen [mm] $q'(t_3)=0$; [/mm]

   (3)  $0= [mm] 2At_3+B$ [/mm]

FRED

>  
> Das wäre wirklich freundlich.
>  Danke schonmal.
>  
>  


Bezug
                                
Bezug
Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:07 Sa 08.01.2011
Autor: Ice-Man

Ok, das verstehe ich einigermaßen. Danke.

Nur wie müsste ich denn jetzt weiter vorgehen, damit ich meine Lösung

[mm] q(t)=\bruch{Q}{(t2-t3)^{2}}*(t-t3)^{2} [/mm]

erhalte?

Bezug
                                        
Bezug
Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 14:17 Sa 08.01.2011
Autor: MathePower

Hallo Ice-Man,

> Ok, das verstehe ich einigermaßen. Danke.
>  
> Nur wie müsste ich denn jetzt weiter vorgehen, damit ich
> meine Lösung
>
> [mm]q(t)=\bruch{Q}{(t2-t3)^{2}}*(t-t3)^{2}[/mm]
>  
> erhalte?


Das von meinem Vorredner erstellte Gleichungssystem lösen,
und die Koeffizienten A,B,C in die Funktionsgleichung einsetzen.


Gruss
MathePower

Bezug
                                                
Bezug
Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:41 So 09.01.2011
Autor: Ice-Man

Gibt es vielleicht so eine Art "Schema" nachdem man vorgehen kann, wenn man aus der Skizze die "Funktion bestimmt"?

Danke

Bezug
                                                        
Bezug
Funktion: Steckbriefaufgaben
Status: (Antwort) fertig Status 
Datum: 12:44 So 09.01.2011
Autor: Roadrunner

Hallo Ice-Man!


Siehe hier unter MBSteckbriefaufgaben.


Gruß vom
Roadrunner


Bezug
                                
Bezug
Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:16 Mo 10.01.2011
Autor: Ice-Man

Ich glaub ich habe immer noch einen Fehler in meiner Rechnung.
Habe nun nach A, B und C aufgelöst.

[mm] A=\bruch{Q}{(t2-t3)^{2}} [/mm]

[mm] B=-2\bruch{Q}{(t2-t3)^{2}}*t3 [/mm]

[mm] C=\bruch{Q}{(t2-t3)^{2}}*t3^{2} [/mm]

Und das würde ich jetzt in die "Normalform" [mm] q(t)=At^{2}+Bt+C [/mm] einsetzen.

Stimmt mein Rechenweg bis hier?

Vielen Dank nochmal.

Bezug
                                        
Bezug
Funktion: einsetzen, ausklammern, ...
Status: (Antwort) fertig Status 
Datum: 14:20 Mo 10.01.2011
Autor: Roadrunner

Hallo Ice-Man!


Das sieht bisher ganz gut aus. Setze das nun ein und klammere anschließend den Bruch aus. Dann bist Du der gewünschten Lösung schon sehr nahe.


Gruß vom
Roadrunner


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]