matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionenFunktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Funktionen" - Funktion
Funktion < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Funktion: Ansatz / Übersetzung
Status: (Frage) beantwortet Status 
Datum: 13:58 Sa 18.09.2010
Autor: monstre123

Aufgabe
3) Welche der folgenden Aussagen ist falsch? Eine Funktion F: [mm] \IR \to \IR^{n} [/mm]  ist differenzierbar im Punkt [mm] t_{0}=0 [/mm] , wenn

a) alle Koordinatenfunktionen differenzierbar sind.

b) der Grenzwert [mm] \limes_{h\rightarrow\infty}h^{-1}(F(h)-F(0)) [/mm] existiert.

c) es einen Vektor G [mm] \in \IR^{n} [/mm] gibt mit [mm] \limes_{h\rightarrow\infty}h^{-1}(F(h)-F(0)-hG)=0. [/mm]

d) es einen Vektor G [mm] \in \IR^{n} [/mm] gibt mit [mm] \limes_{h\rightarrow\infty}h(F(h)-F(0)-hG)=0. [/mm]

Hallo,

so ich habe ein paar Fragen zur obigen Frage:

1) Kann ich ein Bsp. haben, wo eine Funktion F von [mm] \IR \to \IR^{n} [/mm] differenzierbar in [mm] t_{0}=0 [/mm] ist? ich kann mir irgendwie gerade nix darunter vorstellen; das [mm] t_{0}=0 [/mm] irritiert irgendwie.

2) Was ist eine Koordinatenfunktion? (nix in wiki gefunden)

und b, c, d als Antwortmöglichkeiten verstehe ich auch nicht :P


Danke vorab.

        
Bezug
Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 14:36 Sa 18.09.2010
Autor: XPatrickX


> 3) Welche der folgenden Aussagen ist falsch? Eine Funktion
> F: [mm]\IR \to \IR^{n}[/mm]  ist differenzierbar im Punkt [mm]t_{0}=0[/mm] ,
> wenn
>
> a) alle Koordinatenfunktionen differenzierbar sind.
>  
> b) der Grenzwert
> [mm]\limes_{h\rightarrow\infty}h^{-1}(F(h)-F(0))[/mm] existiert.
>  
> c) es einen Vektor G [mm]\in \IR^{n}[/mm] gibt mit
> [mm]\limes_{h\rightarrow\infty}h^{-1}(F(h)-F(0)-hG)=0.[/mm]
>  
> d) es einen Vektor G [mm]\in \IR^{n}[/mm] gibt mit
> [mm]\limes_{h\rightarrow\infty}h(F(h)-F(0)-hG)=0.[/mm]
>  Hallo,
>  
> so ich habe ein paar Fragen zur obigen Frage:
>  
> 1) Kann ich ein Bsp. haben, wo eine Funktion F von [mm]\IR \to \IR^{n}[/mm]
> differenzierbar in [mm]t_{0}=0[/mm] ist? ich kann mir irgendwie
> gerade nix darunter vorstellen; das [mm]t_{0}=0[/mm] irritiert
> irgendwie.

Na z.B. die Funktion [mm] $f:\IR\to\IR^2 x\mapsto (x^2, [/mm] 4x)$
Interessanter ist vielleicht eine Funktion, die in [mm] t_0=0 [/mm] nicht diffbar ist:
[mm] $f:\IR\to\IR^2 x\mapsto (x^2, [/mm] |x|)$
Wir betrachten also nicht die Differenzierbarkeit auf ganz [mm] \IR [/mm] sondern nur im Nullpunkt.

>
> 2) Was ist eine Koordinatenfunktion? (nix in wiki gefunden)
>

Du hast ja eine vektorwertige Funktion, d.h. deine Funktion bildet ab in den [mm] \IR^n. [/mm] Eine Koordinationfunktion ist nun die Funktion in einer Komponente des Vektors.

> und b, c, d als Antwortmöglichkeiten verstehe ich auch
> nicht :P
>

Was genau ist denn unklar?



>
> Danke vorab.

Gruß Patrick

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]