matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenSchul-AnalysisFunktion
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Schul-Analysis" - Funktion
Funktion < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Funktion: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 10:47 Fr 08.08.2008
Autor: Thorsten

Aufgabe
Handelt es sich um eine Funktion? Antwort mit Begründung.
a) Umfang eines Quadrats [mm] \to [/mm] Flächeninhalt eines Quadrats
b) Umfang eines Rechtecks [mm] \to [/mm] Flächeninhalt eines Rechtecks

Hallo!

Bin bei dieser Aufgabe sehr unsicher, wie ich überhaupt vorgehen soll?!

Klar ist, dass es sich weder um eine lineare Funktion noch um eine Exponentialfunktion handelt. Trotzdem denke ich, dass es ja einen Zusammenhang geben muss.

Erstellt man für a) eine Wertetabelle, dann ergeben sich folgende Wertepaare:
Umfang     Flächeninhalte
     0                    0
     4                    1
     8                    4
    12                   9
    16                  16
    20                  25
    24                  36                  usw. (Vorausetzung jeweils Kantenlänge +1)

Anhand der Ergebnisse kann man eine lineare Funktion ausschließen, da eine Veränderung des Umfangs nicht zu einer gleichmäßigen Veränderung des Flächeninhalts führt.
Eine Exponentialfunktion ist es ebenfalls nicht. Weil keine Funktion nach dem Muster y = b * [mm] a^{x} [/mm] zu erstellen ist, die die Wertepaare erfüllt.

Wie kann ist diese Aufgabe zu lösen.

Vielen Dank für euere Hilfe!!!


        
Bezug
Funktion: Idee
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:57 Fr 08.08.2008
Autor: Thorsten

Bei der Veränderung des Flächeninhalts handelt es sich ja um eine Arithmetische Folge zweiter Ordnung. Aber ich finde keine Verbindung zum Umfang bzw. wie mir das weiterhelfen könnte.

Bezug
        
Bezug
Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 11:16 Fr 08.08.2008
Autor: fred97

Bei a) handelt es sich um eine Funktion.

Nennen wir die Seitenlänge des Quadrats einmal a. Dann ist der Umfang u = 4a und die Fläche f = [mm] a^2 [/mm] = [mm] (u/4)^2, [/mm] somit ist

     Umfang eines Quadrats $ [mm] \to [/mm] $ Flächeninhalt eines Quadrats

gegeben durch die Funktion f(u) = [mm] (u/4)^2. [/mm]



Bei b) handelt es sich nicht um eine Funktion ! Denn einem gegebenen Umfang eines Rechtecks kann man nicht eindeutig einen Flächeninhalt zuordnen:

Ein Rechteck mit den Seitenlängen a und b hat den Umfang u = 2a+2b.
Ist z.B. u = 4, so gibt es viele Möglichkeiten für a und b:


1. a =b = 1, dann ist der Flächeninhalt = 1.
2. a = 1,5, b = 0,5, dann ist der Flächeninhalt = 0,75
.
.
.
.



FRED

Bezug
                
Bezug
Funktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:25 Fr 08.08.2008
Autor: Thorsten

Vielen Dank!

Eigentlich einfach, wäre aber wohl nicht hingekommen.

Gruß

Thorsten

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]