matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionenFunktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Funktionen" - Funktion
Funktion < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:26 Mo 25.09.2006
Autor: stefan67

Von einem Flugzeug mit der Eigengeschwindigkeit [mm] v_{F} [/mm] =600m/s wird zum Zeitpunkt t=0 eine Sonde mit der Beschleunigung [mm] a=20m/s^2 [/mm] abgeschossen.
Für den zurückgelegten Weg s dieser Sonde gilt:
(1) [mm] s_{(t)} =v_{F}*t+ \bruch{a}{2}*t^2 [/mm]

a) berechnen sie die Zeit [mm] t_{1}, [/mm] nach der die Sonde den Weg s=5000m zurückgelegt hat.

b) Bei Aufgabe (a) erhalten sie für die gesuchte Zeit [mm] t_{1} [/mm] eine quadratische Gleichung. Überprüfen sie ihre Lösung dieser quadratischen Gleichung mithilfe des Satzes von Vieta.

c) Ermitteln sie die Zeit [mm] t_{1} [/mm] mit einem (einfachen) grafischen Verfahren!
Formen sie dazu die Gleichung (1) zweckmäßig um.

d) Zeichnen sie die Parabeln zu [mm] s_{(t)} [/mm] nach Gleichung (1) für die Geschwindigkeiten [mm] v_{F} [/mm] =200m/s bzw. [mm] v_{F}= [/mm] 400m/s [mm] (0\le t\le [/mm] 10)

        
Bezug
Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 12:29 Mo 25.09.2006
Autor: VNV_Tommy

Hallo stefan!

Schöne Aufgabe.

Gruß,
Tommy

Bezug
                
Bezug
Funktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:35 Mo 25.09.2006
Autor: stefan67

JA das ist Geschmackssache

Bezug
        
Bezug
Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 12:42 Mo 25.09.2006
Autor: M.Rex

Hallo

> Von einem Flugzeug mit der Eigengeschwindigkeit [mm]v_{F}[/mm]
> =600m/s wird zum Zeitpunkt t=0 eine Sonde mit der
> Beschleunigung [mm]a=20m/s^2[/mm] abgeschossen.
>  Für den zurückgelegten Weg s dieser Sonde gilt:
>  (1) [mm]s_{(t)} =v_{F}*t+ \bruch{a}{2}*r^2[/mm]
>  
> a) berechnen sie die Zeit [mm]t_{1},[/mm] nach der die Sonde den Weg
> s=5000m zurückgelegt hat.

Es wird die Zeit [mm] t_{1} [/mm] gesucht, für die gilt:

[mm] 5000=v_{F}*t_{1}+\bruch{a}{2}t_{1}² [/mm]
Mit obigen Werten: [mm] 5000=600*t_{1}+\underbrace{\bruch{20}{2}}_{=10}t_{1}² [/mm]

>  
> b) Bei Aufgabe (a) erhalten sie für die gesuchte Zeit [mm]t_{1}[/mm]
> eine quadratische Gleichung. Überprüfen sie ihre Lösung
> dieser quadratischen Gleichung mithilfe des Satzes von
> Vieta.

Das sollte, wenn mal den Satz von Vietá kennt, kein Problem darstellen

>  
> c) Ermitteln sie die Zeit [mm]t_{1}[/mm] mit einem (einfachen)
> grafischen Verfahren!
>  Formen sie dazu die Gleichung (1) zweckmäßig um.

Hier würde ich die Formel [mm] s=v_{F}*t_{1}+\bruch{a}{2}t_{1}² [/mm]
umstellen zu [mm] 0=\bruch{a}{2}t_{1}²+v_{F}*t_{1}-s [/mm]
Hier ist die gesuchte Zeit die Nullstelle der Funktion.

>  
> d) Zeichnen sie die Parabeln zu [mm]s_{(t)}[/mm] nach Gleichung (1)
> für die Geschwindigkeiten [mm]v_{F}[/mm] =200m/s bzw. [mm]v_{F}=[/mm] 400m/s
> [mm](0\le t\le[/mm] 10)

Das sollte kein Problem sein.

Marius


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]