matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche DifferentialgleichungenFundamentalsystem
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Gewöhnliche Differentialgleichungen" - Fundamentalsystem
Fundamentalsystem < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Fundamentalsystem: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:01 Sa 08.11.2008
Autor: Joan2

Aufgabe
Bestimmen Sie ein Lösungs-Fundamentalsystem der Differentialgleichung
[mm] y'=\pmat{ 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1}y [/mm]

Ich habe jetzt die Eigenwerte versucht zu bestimmen:
[mm] det(A-\lambda*I) [/mm] = 0 [mm] \Rightarrow \lambda_{1,2}=\pm [/mm] 0 und [mm] \lambda_{3}= [/mm] 3

Und jetzt hab ich nämlich ein Problem bei der Berechnung der Eigenvektoren. Berechne ich diese jeweils so:
(A- [mm] \lambda_{1}*I) [/mm] x = 0
(A- [mm] \lambda_{2}*I) [/mm] x = 0
(A- [mm] \lambda_{3}*I) [/mm] x = 0

oder muss ich es folgender berechnen:
[mm] (A-\lambda_{1}*I) [/mm] x = 0         [mm] \Rightarrow v_{1} [/mm]
[mm] (A-\lambda_{2}*I) [/mm] x = [mm] v_{1} \Rightarrow v_{2} [/mm]
[mm] (A-\lambda_{3}*I) [/mm] x = [mm] v_{2} [/mm]

Weiß jemand weiter?







Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Fundamentalsystem: Antwort
Status: (Antwort) fertig Status 
Datum: 14:23 Sa 08.11.2008
Autor: MathePower

Hallo Joan2,

> Bestimmen Sie ein Lösungs-Fundamentalsystem der
> Differentialgleichung
>  [mm]y'=\pmat{ 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1}y[/mm]
>  Ich habe
> jetzt die Eigenwerte versucht zu bestimmen:
> [mm]det(A-\lambda*I)[/mm] = 0 [mm]\Rightarrow \lambda_{1,2}=\pm[/mm] 0 und
> [mm]\lambda_{3}=[/mm] 3
>  
> Und jetzt hab ich nämlich ein Problem bei der Berechnung
> der Eigenvektoren. Berechne ich diese jeweils so:
>  (A- [mm]\lambda_{1}*I)[/mm] x = 0
>  (A- [mm]\lambda_{2}*I)[/mm] x = 0
>  (A- [mm]\lambda_{3}*I)[/mm] x = 0


Hier gibt es nur eine Gleichung mit 3 Variablen.
Somit ist der Lösungsraum zum Eigenwert 0 2-dimensional,
gibt es auch 2 Eigenvektoren zum Eigenwert 0.

Für den Eigenwert 3 ergibt sich der Eigenvektor aus dem entsprechenden Gleichungssystem.


>  
> oder muss ich es folgender berechnen:
>  [mm](A-\lambda_{1}*I)[/mm] x = 0         [mm]\Rightarrow v_{1}[/mm]
>  
> [mm](A-\lambda_{2}*I)[/mm] x = [mm]v_{1} \Rightarrow v_{2}[/mm]
>  
> [mm](A-\lambda_{3}*I)[/mm] x = [mm]v_{2}[/mm]
>  
> Weiß jemand weiter?

>

> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Gruß
MathePower

Bezug
                
Bezug
Fundamentalsystem: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:36 Sa 08.11.2008
Autor: Joan2

Danke für erstmal die schnelle Hilfe.
D.h. ich errechne die Eigenvektoren mit [mm] (A-\lambda*I)*x [/mm] = 0.
Bei [mm] \lambda [/mm] = 3 muss ich dann nur einsetzen und ausrechnen. Aber bei [mm] \lambda [/mm] = [mm] \pm0 [/mm] ? Ich hab irgendwie nicht ganz verstanden was du meinst.

Bezug
                        
Bezug
Fundamentalsystem: Antwort
Status: (Antwort) fertig Status 
Datum: 15:01 Sa 08.11.2008
Autor: MathePower

Hallo Joan2,

> Danke für erstmal die schnelle Hilfe.
> D.h. ich errechne die Eigenvektoren mit [mm](A-\lambda*I)*x[/mm] =
> 0.
>  Bei [mm]\lambda[/mm] = 3 muss ich dann nur einsetzen und
> ausrechnen. Aber bei [mm]\lambda[/mm] = [mm]\pm0[/mm] ? Ich hab irgendwie
> nicht ganz verstanden was du meinst.


Ja, bei [mm]\lambda=3[/mm] musst Du nur einsetzen und ausrechnen.

Bei [mm]\lambda=0[/mm] haben wir nur eine Gleichung, aber eben 3 Variablen.

Löse daher wie folgt auf:

[mm]x_{1}+x_{2}+x_{3}=0 \Rightarrow x_{1}= \ \dots [/mm]

Somit gibt es eine Parameterlösung in der Art:

[mm]\pmat{x_{1} \\ x_{2} \\ x_{3}}=s*\pmat{\dots \\ \dots \\ \dots}+t*\pmat{\dots \\ \dots \\ \dots}=s*ev_{1}+t*ev_{2}[/mm]

,wobei [mm]ev_{1}, \ ev_{2}[/mm] den Lösungsraum aufspannen.

Diese Vektoren [mm]ev_{1}, \ ev_{2}[/mm] sind zugleich die
Eigenvektoren zum Eigenwert 0.

Ich hoffe, daß das jetzt ein bischen klarer geworden ist.

Gruß
MathePower

Bezug
                                
Bezug
Fundamentalsystem: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:09 Sa 08.11.2008
Autor: Joan2

Irgendwie noch nicht ganz :(
Ist es nicht so, dass das System unterbestimmt ist, sodass ich dann zum Beispiel [mm] x_{2} [/mm]  und [mm] x_{3} [/mm]    beliebig wählen kann? Dann wären die zum Beispiel gleich 1 woraus dann folgt, dass [mm] x_{1} [/mm] = -2 wäre. Dann hätte ich doch den Eigenvektor
[mm] \vektor{-2 \\ 1 \\ 1} [/mm]

Oder??

Bezug
                                        
Bezug
Fundamentalsystem: Antwort
Status: (Antwort) fertig Status 
Datum: 15:38 Sa 08.11.2008
Autor: MathePower

Hallo Joan2,

> Irgendwie noch nicht ganz :(
>  Ist es nicht so, dass das System unterbestimmt ist, sodass
> ich dann zum Beispiel [mm]x_{2}[/mm]  und [mm]x_{3}[/mm]    beliebig wählen
> kann? Dann wären die zum Beispiel gleich 1 woraus dann
> folgt, dass [mm]x_{1}[/mm] = -2 wäre. Dann hätte ich doch den
> Eigenvektor
> [mm]\vektor{-2 \\ 1 \\ 1}[/mm]


Im Prinzip ja. Nun mußt Du noch einen zweiten, dazu linear unabhängigen Eigenvektor bestimmen.


>  
> Oder??


Besser man macht das so:

[mm]x_{1}+x_{2}+x_{3}=0[/mm]

[mm]\Rightarrow x_{1}=-x_{2}-x_{3}[/mm]

Da [mm]x_{2}[/mm] und [mm]x_{3}[/mm] frei gewählt werden können,
ergibt sich die Lösung zu:

[mm]x_{1}=-s-t[/mm]
[mm]x_{2}=s[/mm]
[mm]x_{3}=t[/mm]

Oder anders geschrieben:

[mm]\pmat{x_{1} \\ x_{2} \\ x_{3}}=s*\pmat{-1 \\ 1 \\ 0}+t*\pmat{-1 \\ 0 \\ 1}[/mm]

Somit haben wir zwei Vektoren gefunden:

[mm]\pmat{-1 \\ 1 \\ 0}, \ \pmat{-1 \\ 0 \\ 1}[/mm]

Gruß
MathePower

Bezug
                                                
Bezug
Fundamentalsystem: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:43 Sa 08.11.2008
Autor: Joan2

Jetzt habe ich es verstanden ^^ Hab vielen, vielen Dank

Liebe Grüße
Joan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]