matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Komplexe AnalysisFundamentalsatz der Algebra
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Komplexe Analysis" - Fundamentalsatz der Algebra
Fundamentalsatz der Algebra < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Fundamentalsatz der Algebra: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:14 Mi 31.05.2006
Autor: benta

Aufgabe
Man beweise unter Zuhilfenahme des Satzes von Rouché den Fundamentalsatz der Algebra.

Mir ist nur der Beweis mit Hilfe der Sätze von Weierstrass und Liouville aus der Funktionentheorie bekannt.
Bitte um Hilfe.

        
Bezug
Fundamentalsatz der Algebra: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:22 Mi 31.05.2006
Autor: felixf

Hallo.

> Man beweise unter Zuhilfenahme des Satzes von Rouché den
> Fundamentalsatz der Algebra.
>
>  Mir ist nur der Beweis mit Hilfe der Sätze von Weierstrass
> und Liouville aus der Funktionentheorie bekannt.

Das ist auch die Standardmethode.

> Bitte um Hilfe.

Mach doch mal nen Anfang, indem du hier etwa die Aussage des Satzes von Rouche hinschreibst.

LG Felix


Bezug
        
Bezug
Fundamentalsatz der Algebra: Anmerkung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:30 Mi 31.05.2006
Autor: benta

Satz von Rouché: Seien f(z) und g(z) im Sterngebiet G holomorph. [mm] \gamma [/mm] berande ein Gebiet G' [mm] \subset [/mm] G.  Auf [mm] \gamma [/mm] gelte die Abschätzung |g(z)| < |f(z)|. Dann besitzen f(z) und f(z) + g(z) in G' die gleiche Gesamtordnung von Nullstellen.


Bezug
        
Bezug
Fundamentalsatz der Algebra: Antwort
Status: (Antwort) fertig Status 
Datum: 18:00 Mi 31.05.2006
Autor: felixf

Hallo!

> Man beweise unter Zuhilfenahme des Satzes von Rouché den
> Fundamentalsatz der Algebra.

Ich wuerde wie folgt vorgehen:

Fuer ein Polynom $p(z) = [mm] \sum_{k=0}^n a_k z^k$ [/mm] mit [mm] $a_n \neq [/mm] 0$ und $n > 0$ schau dir die Funktionen $f(z) := [mm] a_n z^n$ [/mm] und $g(z) := [mm] \sum_{k=0}^{n-1} a_k z^k$ [/mm] an. Es ist ja $p(z) = f(z) + g(z)$.

Du musst nun einen gross genugen Kreis um 0 waehlen, so dass auf dem Kreisrand $|f(z)| > |g(z)|$ ist (das geht weil [mm] $z^n$ [/mm] staerker waechst als [mm] $z^k$, [/mm] $0 [mm] \le [/mm] k < n$; ist im Prinzip das gleiche wie beim normalen Beweis per Liouville, wo man damit zeigt dass $1/p(z)$ fuer $z [mm] \to \infty$ [/mm] beschraenkt ist).

Und jetzt wende den Satz von Rouche an.

LG Felix


Bezug
                
Bezug
Fundamentalsatz der Algebra: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:22 Mi 31.05.2006
Autor: benta

Vielen Dank, das hilft mir sehr weiter.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]