FundamentalsatzAlgebra,Forster < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 15:04 Fr 20.03.2015 | Autor: | sissile |
Aufgabe | Forster, Analysisi 2 (S.35)
Satz:
Sein [mm] n\ge [/mm] 1 und P(z):= [mm] \sum_{k=0}^n c_n z^n, c_k \in \mathbb{C}, c_n \not= [/mm] 0,
ein Polynom n-ten Gerades mit komplexen Koeffizienten. Dann besitzt P mindestens eine komplexe Nullstelle, d.h. es existiert ein [mm] z_0 \in \IC [/mm] mit [mm] P(z_0 [/mm] ) = 0.
Beweis:
Wir betrachten die stetige Funktion
[mm] g:\IC \cong \IR^2 \rightarrow \IR, [/mm] z=x+iy [mm] \rightarrow [/mm] g(z):=|P(z)|.
Da [mm] \lim_{|z|\rightarrow\infty} [/mm] |P(z)| = [mm] \infty [/mm] existiert ein R>0, so dass
[mm] g(z)=|(P(z)|>|c_0| [/mm] für alle |z|>R.
Da die Kreisscheibe [mm] K:={z\in \IC :|z|\le R} [/mm] kompakt ist, nimmt g sein Minimum auf K in einem gewissen Punkt [mm] z_0 \in [/mm] K an. Da [mm] g(0)=|c_0 [/mm] |, und g außerhalb von K überall Werte > [mm] |c_0| [/mm] annimmt wird in [mm] z_0 [/mm] sogar das absolute Minimum ader Funktion g auf [mm] \IC [/mm] angenommen.
i) Falls [mm] g(z_0 [/mm] )=0, gilt [mm] P(z_0)=0 [/mm] und wir sind fertig.
ii) Es bleibt also noch der Fall [mm] g(z_0) [/mm] = [mm] |P(z_0)| [/mm] > 0 zu betrachten. Wir werden sehen, dass dieser Fall nicht auftreten kann. O.B.d.A. können wir annhemen, dass [mm] P(z_0)=1 [/mm] (andernfalls multipliziere man P mit [mm] P(z_0)^{-1}). [/mm] Wir führen die Variablen-Substitution [mm] \zeta [/mm] := [mm] z-z_0 [/mm] durch. Da
[mm] z^k =(z_0 [/mm] + [mm] \zeta)^k =\sum_{v=0}^k \vektor{k\\ v} z_0^{k-v} \zeta^v,
[/mm]
ist [mm] P(z_0 [/mm] + [mm] \zeta) [/mm] =: [mm] Q(\zeta)= [/mm] 1 + [mm] \sum_{k=1}^n a_k \zeta^k
[/mm]
wieder ein Polynom n-ten Gerades in [mm] \zeta, [/mm] das in [mm] \zeta [/mm] = 0 das absolute Minimum seines Betrages annimt.
Sei [mm] m\ge [/mm] 1 minimal mit [mm] a_m \not= [/mm] 0. Damit ist
[mm] Q(\zeta) [/mm] = 1+ [mm] a_m \zeta^m [/mm] + [mm] R(\zeta) [/mm] mit [mm] R(\zeta) =\sum_{k=m+1}^n a_k \zeta^k
[/mm]
(falls m = n, ist R = 0.) Mit M:= [mm] \sum_{k=m+1}^n |a_k| [/mm] gilt [mm] |R(\zeta)|\le M|\zeta|^{m+1} [/mm] für [mm] |\zeta|\le [/mm] 1
Wir könnten den Koeffizienten [mm] a_m [/mm] schreiben, als
[mm] a_m [/mm] = [mm] Ae^{i\alpha } [/mm] mit [mm] \alpha \in \IR [/mm] und A:= [mm] |\alpha_m| [/mm] >0.
Sei jetzt speziell [mm] \zeta [/mm] = [mm] re^{i\phi} [/mm] mit r>0 und [mm] \phi:=\frac{\pi-\alpha}{m}
[/mm]
Damit ist [mm] a_m \zeta^m [/mm] = [mm] Ar^m e^{i\alpha +im\phi} [/mm] = [mm] Ar^m e^{i\pi} [/mm] = -Ar^(m) und
[mm] |Q(\zeta)|=|1-Ar^m+R(\zeta)|\le |1-Ar^m|+Mr^{m+1} [/mm] <1 = Q(0)
falls r>0 genügend klein ist. Dies steht aber im Wiederspruch dazu, dass Q an der Stelle 0 sein Minimum annimt. Daher kann ii) nicht stimmen. |
Hallo,
Ich hab paar Fragen zu dem Beweis und hoffe es ist okay sie hier zu erörtern.
1) Wieso kann ich plötzlich [mm] \zeta [/mm] so spieziell wählen, dass [mm] \phi:=\frac{\pi-\alpha}{m} [/mm] ist?
2) Wieso ist [mm] |1-Ar^m| [/mm] + [mm] Mr^{m+1} [/mm] < 1 ?
LG,
sissi
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 08:05 Sa 21.03.2015 | Autor: | hippias |
1) [mm] $\zeta$ [/mm] kann beliebig gewaehlt werden; es ist ja [mm] $\zeta=z-z_{0}$. [/mm] Durch geschichte Wahl von $z$ kann man jeden moeglichen Wert fuer [mm] $\zeta$ [/mm] erreichen.
2) In Deinen Text wird die Ungleichung nicht allgemein behauptet, sondern fuer hinreichend klein gewaehltes $r>0$. Im Notfall fuehre eine Kurvendiskussion fuer [mm] $1-Ar^{m}+Mr^{m+1}$ [/mm] durch.
|
|
|
|