matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche DifferentialgleichungenFundamentalmatrix
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Gewöhnliche Differentialgleichungen" - Fundamentalmatrix
Fundamentalmatrix < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Fundamentalmatrix: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 00:40 Mo 14.12.2009
Autor: moerni

Aufgabe
RWP [mm] xu''(x)+u'(x)=x^2, [/mm] x [mm] \in [/mm] [1,2], u(1)=u(2)=0

Hallo.
Die Aufgabe ist es, eine Greensche Funktion zu finden, mit welcher man das RWP lösen kann.
Um die Greensche Funktion zu finden, muss ich als Zwischenschritt erstmal die Fundamentalmatrix berechnen. Dazu transformiere ich die DGl auf eine DGl 1. Ordnung. Da erhalte ich:
[mm] y'(x)=\pmat{ 0 & 1 \\ 0 & -1/x}y(x)+ \pmat{0 & x}. [/mm] Die Fundamentalmatrix ist dann [mm] Y(x)=e^{xF(x)}=e^{xD}e^{xN}=\pmat{1 & x \\ 0 & e^{-1}}. [/mm] Das kann aber irgendwie nicht stimmen... wo liegt der Fehler? Kann mir jemand helfen?
grüße, moerni

        
Bezug
Fundamentalmatrix: Antwort
Status: (Antwort) fertig Status 
Datum: 01:12 Mo 14.12.2009
Autor: pelzig


> Um die Greensche Funktion zu finden, muss ich als
> Zwischenschritt erstmal die Fundamentalmatrix berechnen.
> Dazu transformiere ich die DGl auf eine DGl 1. Ordnung. Da
> erhalte ich:
> [mm]y'(x)=\pmat{ 0 & 1 \\ 0 & -1/x}y(x)+ \pmat{0 & x}.[/mm]

Soweit richtig. Lineare DGL erster Ordnung, nur dumm dass die Koeffizientenmatrix A nicht konstant ist. Mich würde mal interessieren, wie du jetzt exp(A) ausgerechnet hast, solltest du vielleicht auch mal mitschreiben. Wikipedia sagt nämlich, dass dies i.A. sehr schwierig zu berechnen ist, lediglich in Spezialfällen (z.B. wenn A konstant ist).

Alternativ-Vorschlag: Substituiere in der Ausgangsgleichung z=u', dann erhälst du eine []eulersche Differentialgleichung.

Gruß, Robert

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]