matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche DifferentialgleichungenFundamentallösung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Gewöhnliche Differentialgleichungen" - Fundamentallösung
Fundamentallösung < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Fundamentallösung: korrektur
Status: (Frage) beantwortet Status 
Datum: 14:21 Di 27.06.2006
Autor: VHN

Aufgabe
bestimme die fundamentallösung für das homogene system:
x' =  [mm] \pmat{ 1 & 0 & 1 \\ 0 & 1 & 0 \\ -1 & 0 & 3 } [/mm] x
mit x [mm] \in \IC^{3}. [/mm]

hallo leute!

ich bin beim lösen der aufgabe inzwischen soweit gekommen:
ich habe die eigenwerte ausgerechnet mit det(A-pE)=0 (wobei A die matrix aus der angabe ist).
[mm] det(A-pE)=(1-p)(p-2)^{2} [/mm]
also sind [mm] p_{1}=1 [/mm] und [mm] p_{2}=2 [/mm] eigenwerte, wobei 2 doppelter eigenwert ist.
jetzt muss ich doch die eigenvektoren zu den eigenwerten ausrechnen.
also [mm] (A-p_{1}E) \vektor{x_{1} \\ x_{2} \\ x_{3}} [/mm] = [mm] \vektor{0 \\ 0 \\ 0} [/mm] wobei [mm] \vektor{x_{1} \\ x_{2} \\ x_{3}} [/mm] = x.
eigenvektor [mm] v_{1} [/mm] zu 1 ist [mm] \vektor{0 \\ 1 \\ 0}. [/mm]

dasselbe für [mm] p_{2}=2: [/mm] eigenvektor [mm] v_{2} [/mm] = [mm] \vektor{1 \\ 0 \\ 1}. [/mm]
jetzt berechne ich den hauptvektor 2. stufe:
[mm] (A-p_{2}E) [/mm] = [mm] \pmat{ -1 & 0 & 1 \\ 0 & -1 & 0 \\ -1 & 0 & 1 } [/mm]
[mm] \pmat{ -1 & 0 & 1 \\ 0 & -1 & 0 \\ -1 & 0 & 1 } \vektor{x_{1} \\ x_{2} \\ x_{3}} [/mm] = [mm] \vektor{0 \\ 1 \\ 0}. [/mm]
[mm] v_{3} [/mm] =  [mm] \vektor{1 \\ -1 \\ 1}. [/mm]

also sind [mm] u_{1}(t) [/mm] = [mm] e^{1t} \vektor{0 \\ 1 \\ 0}. [/mm]
[mm] u_{2} [/mm] = [mm] e^{2t} \vektor{1 \\ 0 \\ 1} [/mm]
[mm] u_{3} [/mm] = [mm] e^{2t} \vektor{1 + t \\ -1 \\ 1 + t}. [/mm]

stimmt meine lösung? ich bin mir ziemlich unsicher. ich hoffe, ihr könnt mich verbessern und mir weiterhelfen. danke!

VH



stimmt das bis hierhin?



        
Bezug
Fundamentallösung: vermutung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:30 Di 27.06.2006
Autor: planloos

hallo vhn,

erstmal mein beileid dazu, das du dir auch diese vorlesung antun must, ich hoffe mal, dir gings in der klausur besser als mir....

ich bin leider auch keine leuchte im bereich der differenzialgleichungen,
allerdings glaube ich zumindest in deiner lösung einen fehler gefunden zu haben...

bei der berechung des hauptvektors 2. stufe (hätte ich von dem in linearer algebra schon mal was hören solln?? ) hast du die matrix zum eigenwert 2 genommen * x1 x2 x3 = EV zum EW (1)....

ich glaube aber, das du die matrix * x1 x2 x3 = EV zum EW (2) nehmen must... den rest deiner lösung kann ich leider nicht kommentieren, mit dem muss ich jetzt selber noch kämpfen.


Bezug
        
Bezug
Fundamentallösung: Antwort
Status: (Antwort) fertig Status 
Datum: 11:08 Mi 28.06.2006
Autor: Hanno

Hallo.

> $ [mm] \pmat{ -1 & 0 & 1 \\ 0 & -1 & 0 \\ -1 & 0 & 1 } \vektor{x_{1} \\ x_{2} \\ x_{3}} [/mm] $ = $ [mm] \vektor{0 \\ 1 \\ 0}. [/mm] $

Hier machst du einen Fehler. Du bestimmst den Hauptvektor 2. Stufe zum Eigenwert 1, nicht 2. Richtig müsstest du die Gleichung $ [mm] \pmat{ -1 & 0 & 1 \\ 0 & -1 & 0 \\ -1 & 0 & 1 } \vektor{x_{1} \\ x_{2} \\ x_{3}} [/mm] = [mm] \vektor{1 \\ 0 \\ 1}. [/mm] $ lösen.

Der Rest, d.h. die Art des Vorgehens, ist aber richtig [ok].

Dass deine Endlösung nicht stimmen kann, siehst du, wenn du in die Funktionen der scheinbaren Basis einmal $t=0$ einsetzt. Du erhältst drei linear abhängige Vektoren, was nicht sein kann.


Liebe Grüße,
Hanno

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]