matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAlgebraFreier Modul / Quotient
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Algebra" - Freier Modul / Quotient
Freier Modul / Quotient < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Freier Modul / Quotient: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:41 Fr 17.07.2009
Autor: cantor

Hallo,

noch einmal eine Frage von mir: In meinem Skript zur Algebra II steht folgendes:

Sei $M$ ein $A$-Modul. Dann ist $M$ Quotient eines freien $A$-Moduls $F$.

und als Begründung:

Sei [mm] $\{ x_i \}_{i\in I}$ [/mm] ein Erzeugendensystem von $M$. Setze
$F = [mm] \oplus_{i \in I} [/mm] A$ mit "Standardbasis" [mm] $\{ e_i \}_{i \in I}$ [/mm]
Dann ist [mm] $\Theta [/mm] : F [mm] \to [/mm] M, [mm] e_i \mapsto [/mm] x$ eine surjektive A-lineare Abbildung.

Was ich nicht verstehe, ist: Was hat diese surjektive Abbildung mit der Tatsache zu tun, dass M Quotient eines freien A-Moduls ist? Ist wahrscheinlich einfach, aber ich sehe den Zusammenhang einfach nicht. Noch dazu ist die Abbildung seltsam definiert, soll das evtl [mm] $x_i$ [/mm] heißen statt x ?

Vielen Dank!

        
Bezug
Freier Modul / Quotient: Antwort
Status: (Antwort) fertig Status 
Datum: 02:57 Sa 18.07.2009
Autor: felixf

Hallo!

> noch einmal eine Frage von mir: In meinem Skript zur
> Algebra II steht folgendes:
>  
> Sei [mm]M[/mm] ein [mm]A[/mm]-Modul. Dann ist [mm]M[/mm] Quotient eines freien
> [mm]A[/mm]-Moduls [mm]F[/mm].
>  
> und als Begründung:
>  
> Sei [mm]\{ x_i \}_{i\in I}[/mm] ein Erzeugendensystem von [mm]M[/mm]. Setze
> [mm]F = \oplus_{i \in I} A[/mm] mit "Standardbasis" [mm]\{ e_i \}_{i \in I}[/mm]
>  
> Dann ist [mm]\Theta : F \to M, e_i \mapsto x[/mm] eine surjektive
> A-lineare Abbildung.
>  
> Was ich nicht verstehe, ist: Was hat diese surjektive
> Abbildung mit der Tatsache zu tun, dass M Quotient eines
> freien A-Moduls ist? Ist wahrscheinlich einfach, aber ich
> sehe den Zusammenhang einfach nicht.

Stichwort: Homomorphiesatz

> Noch dazu ist die
> Abbildung seltsam definiert, soll das evtl [mm]x_i[/mm] heißen
> statt x ?

Ja, soll es.

LG Felix


Bezug
                
Bezug
Freier Modul / Quotient: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:06 Sa 18.07.2009
Autor: cantor

achso, der Quotient im Sinne von Modulo war gemeint. Ich dachte es wäre ein Modulquotient gemeint (weil kurz darüber der Modulquotient (A : B) definiert wurde :) ). Na gut, dann Vielen Dank!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]