matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche DifferentialgleichungenFragen zu einigen DGLen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Gewöhnliche Differentialgleichungen" - Fragen zu einigen DGLen
Fragen zu einigen DGLen < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Fragen zu einigen DGLen: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 14:00 So 10.07.2011
Autor: BunDemOut

Aufgabe
Lösen Sie folgende Differentialgleichungen:

1) [mm] y'=\bruch{x^2+y^2}{2xy} [/mm]
2) [mm] y'=\bruch{y}{x}\cdot\left(1+\ln{\bruch{y}{x}}\right) [/mm]
3) [mm] (3y+2x+1)^2*(3y'+2)=3x^2 [/mm]
4) [mm] y'=\cos^2({3y+2x+1})-\bruch{2}{3} [/mm]
5) [mm] y'=\bruch{y^2+x^2*y^2+e*x^4}{x*y} [/mm]
6) [mm] y'=2+e^{x-y} [/mm]

Hallo,

Oben stehende DGLen habe ich mit WolframAlpha überprüft und erhalte teilweise Lösungen die ein bisschen von meinen Lösungen abweichen. Deshalb wollte ich euch fragen ob ihr kurz über meinen Lösungsweg schauen könntet.

1)

Hier substituiere ich zunächst [mm] z=\bruch{y}{x} [/mm]
Und erhalte folgende  DGL:
[mm] z'x=\bruch{1-z^2}{2z} [/mm]
Nun SDV:
[mm] ln|1-z^2|=A*e^{\ln x} [/mm]

1. Fall:

[mm] z=\wurzel{A*x+1} [/mm]
[mm] y=x*\wurzel{A*x+1} [/mm]

2. Fall:

[mm] z=\wurzel{1-A*x} [/mm]
[mm] y=x*\wurzel{1-A*x} [/mm]

2)

Substition von [mm] z=\bruch{y}{x} [/mm] und ich erhalte folgende DGL:
[mm] z'x=z*\ln{z} [/mm]

[mm] \ln{\ln{|z|}}=\ln{x}+c [/mm]

[mm] \ln{|z|}=x*A [/mm]

[mm] |z|=e^{x*A} [/mm]

[mm] y=\pm*x*e^{x*A} [/mm]

3)
Substitution: z=3y+2x+1

=> [mm] z'-2=\bruch{3x^2}{z^2} [/mm]

[mm] z^3=3*(x^3+C) [/mm]
[mm] z=\wurzel[3]{3*(x^3+C)} [/mm]
[mm] y=\bruch{1}{3}*\left(\wurzel[3]{3*(x^3+C)}-2x-1 \right) [/mm]

4)
Substitution: z=3y+2x+1
Damit ergibt sich folgende DGL:

[mm] z'=3*\cos^2 [/mm] z

[mm] \bruch{1}{3}*\tan [/mm] z=x+C
[mm] z=\arctan{(3x+A)} [/mm]
[mm] y=\bruch{1}{3}*(\arctan{(3x+A)}-2x-1) [/mm]

5)
Substitution: [mm] z=\bruch{y}{x} [/mm]
Neue DGL:
[mm] z'x=x^2*\bruch{z^2+e}{z} [/mm]
[mm] \bruch{1}{2} \ln |z^2+e|=\bruch{x^2}{2}+C [/mm]
[mm] \ln |z|=\bruch{x^2}{2}+C [/mm]
[mm] z=\pm e^{\bruch{x^2}{2}*A} [/mm]
[mm] y=\pm x*e^{\bruch{x^2}{2}*A} [/mm]


6)
Substition: z=x-y
Neue DGL:
[mm] z'=-1-e^z [/mm]

[mm] -(z-\ln |1+e^z|)=x+C [/mm]
[mm] -z+\ln |1+e^z|=x+C [/mm]
[mm] \ln|1+e^z|-\ln e^z=x+C [/mm]
[mm] \ln |\bruch{1+e^z}{e^z}|=x+C [/mm]

1. Fall:
[mm] \bruch{1+e^z}{e^z}=A*e^x [/mm]
[mm] e^z=\bruch{1}{A*e^x-1} [/mm]
[mm] z=\ln (\bruch{1}{A*e^x-1}) [/mm]
[mm] y=x-\ln (\bruch{1}{A*e^x-1}) [/mm]

2. Fall:
[mm] \bruch{-1-e^z}{e^z}=A*e^x [/mm]
[mm] e^z=-\bruch{1}{A*e^x+1} [/mm]
[mm] z=\ln (\bruch{1}{A*e^x+1}) [/mm]
[mm] y=x-\ln (\bruch{1}{A*e^x+1}) [/mm]

Vielen, vielen Dank fürs Durchschauen!

        
Bezug
Fragen zu einigen DGLen: 1)
Status: (Antwort) fertig Status 
Datum: 15:12 So 10.07.2011
Autor: schachuzipus

Hallo BDO,


sorry, bin statt auf "Vorschau" auf "Absenden" gekommen - muss noch bearbeiten ... ;-(

bitte stelle doch derart viele Aufgaben in verschiedenen threads.

Von mir aus auch 3x2 Aufgaben ...


> Lösen Sie folgende Differentialgleichungen:
>  
> 1) [mm]y'=\bruch{x^2+y^2}{2xy}[/mm]

> Oben stehende DGLen habe ich mit WolframAlpha überprüft
> und erhalte teilweise Lösungen die ein bisschen von meinen
> Lösungen abweichen.

Welche Lösungen und wo weichen sie von deinen ab??

Deshalb wollte ich euch fragen ob ihr

> kurz über meinen Lösungsweg schauen könntet.
>  
> 1)
>  
> Hier substituiere ich zunächst [mm]z=\bruch{y}{x}[/mm]
>  Und erhalte folgende  DGL:
>  [mm]z'x=\bruch{1-z^2}{2z}[/mm] [ok]

>  Nun SDV: [haee]

> [mm]ln|1-z^2|=A*e^{\ln x}[/mm]

Wie kommt das?

Doch erstmal [mm] $\int{\frac{2z}{1-z^2} \ dz}=\int{\frac{1}{x} \ dx}$ [/mm]

Also [mm] $-\ln(|z^2-1|)=\ln|x|+c$ [/mm]

Weiter [mm] $\ln(|z^2-1|)=\ln\left(\frac{1}{|x|}\right)+c_1$, [/mm] also [mm] $|z^2-1|=\frac{c_2}{|x|}$ [/mm]

Damit [mm] $z^2-1=\frac{A}{x}$, [/mm] also [mm] $z^2=\frac{A}{x}+1$ [/mm]


>  
> 1. Fall:
>  
> [mm]z=\wurzel{A*x+1}[/mm]
>  [mm]y=x*\wurzel{A*x+1}[/mm]
>  
> 2. Fall:
>  
> [mm]z=\wurzel{1-A*x}[/mm]
>  [mm]y=x*\wurzel{1-A*x}[/mm]
>  
> Vielen Dank fürs Durchschauen!

Jo, aber eins nach dem anderen ;-)

Gruß

schachuzipus


Bezug
                
Bezug
Fragen zu einigen DGLen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:19 So 10.07.2011
Autor: BunDemOut

SDV=Separation d. Variablen.
Da habe ich mich wohl vertippt:

[mm] e^{\ln |1-z^2|}=e^{\ln x +C}=A*x [/mm]

Sorry, dachte alle in einem Thread wäre übersichtlicher...





Bezug
        
Bezug
Fragen zu einigen DGLen: 2)
Status: (Antwort) fertig Status 
Datum: 15:36 So 10.07.2011
Autor: schachuzipus

Hallo nochmal,



>  2) [mm]y'=\bruch{y}{x}\cdot\left(1+\ln{\bruch{y}{x}}\right)[/mm]

> 2)
>  
> Substition von [mm]z=\bruch{y}{x}[/mm] und ich erhalte folgende
> DGL:
>  [mm]z'x=z*\ln{z}[/mm]
>  
> [mm]\ln{\ln{|z|}}=\ln{x}+c[/mm]

Genauer [mm] $\ln(|\ln(z)|)=\ln(|x|)+c$ [/mm]

[mm] $\Rightarrow z=e^{Ax}$ [/mm] und [mm] $y=x\cdot{}e^{Ax}$ [/mm]

>  
> [mm]\ln{|z|}=x*A[/mm]
>  
> [mm]|z|=e^{x*A}[/mm]
>  
> [mm]y=\pm*x*e^{x*A}[/mm]

Ohne [mm] $\pm$ [/mm]

Gruß

schachuzipus


Bezug
                
Bezug
Fragen zu einigen DGLen: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 15:50 So 10.07.2011
Autor: BunDemOut

Weil der Betrag quasi auf beiden Seiten steht?


Bezug
                        
Bezug
Fragen zu einigen DGLen: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:20 Di 12.07.2011
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
        
Bezug
Fragen zu einigen DGLen: 3)
Status: (Antwort) fertig Status 
Datum: 16:13 So 10.07.2011
Autor: schachuzipus

Hallo nochmal,



>  3) [mm](3y+2x+1)^2*(3y'+2)=3x^2[/mm]

> 3)
>  Substitution: z=3y+2x+1 [ok]
>  
> => [mm]z'-2=\bruch{3x^2}{z^2}[/mm]

Wieso "-2" ?

Doch [mm] $z^2z'=3x^2$ [/mm] ...

>  
> [mm]z^3=3*(x^3+C)[/mm]
>  [mm]z=\wurzel[3]{3*(x^3+C)}[/mm]
>  [mm]y=\bruch{1}{3}*\left(\wurzel[3]{3*(x^3+C)}-2x-1 \right)[/mm] [ok]


Gruß

schachuzipus


Bezug
                
Bezug
Fragen zu einigen DGLen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:40 So 10.07.2011
Autor: BunDemOut

Bin um ne Zeile verrutscht beim Abtippen :)
Die "-2" steht auf beiden Seiten und fliegt somit raus...


Bezug
        
Bezug
Fragen zu einigen DGLen: 4)
Status: (Antwort) fertig Status 
Datum: 16:18 So 10.07.2011
Autor: schachuzipus

Hallo nochmal,



>  4) [mm]y'=\cos^2({3y+2x+1})-\bruch{2}{3}[/mm]

> 4)
>  Substitution: z=3y+2x+1
>  Damit ergibt sich folgende DGL:
>  
> [mm]z'=3*\cos^2[/mm] z [ok]
>  
> [mm]\bruch{1}{3}*\tan[/mm] z=x+C [ok]
>  [mm]z=\arctan{(3x+A)}[/mm] [ok]
>  [mm]y=\bruch{1}{3}*(\arctan{(3x+A)}-2x-1)[/mm] [ok]
>  


Gruß

schachuzipus


Bezug
        
Bezug
Fragen zu einigen DGLen: 5)
Status: (Antwort) fertig Status 
Datum: 12:20 Mo 11.07.2011
Autor: schachuzipus

Hallo nochmal,

weiter geht's ...



>  5) [mm]y'=\bruch{y^2+x^2*y^2+e*x^4}{x*y}[/mm]

> 5)
>  Substitution: [mm]z=\bruch{y}{x}[/mm]
>  Neue DGL:
>  [mm]z'x=x^2*\bruch{z^2+e}{z}[/mm] [ok]
>  [mm]\bruch{1}{2} \ln |z^2+e|=\bruch{x^2}{2}+C[/mm] [ok]

Bis hierhin komme ich mit!

>  [mm]\ln |z|=\bruch{x^2}{2}+C[/mm]

Das erschließt sich mir nicht mehr ...

Zunächst doch [mm]\ln(|z^2+e|)=x^2+2C[/mm] und damit [mm]|z^2+e|=e^{x^2+2C}=C_1e^{x^2}[/mm]

Also [mm]z^2+e=C_2e^{x^2}[/mm] und somit [mm]z=\pm\sqrt{C_2e^{x^2}-e}[/mm]

Also [mm] $y=\pm\sqrt{C_2e^{x^2}-e}\cdot{}x$ [/mm]

>  
> [mm]z=\pm e^{\bruch{x^2}{2}*A}[/mm]
>  [mm]y=\pm x*e^{\bruch{x^2}{2}*A}[/mm]


Gruß

schachuzipus


Bezug
                
Bezug
Fragen zu einigen DGLen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:27 Mo 11.07.2011
Autor: BunDemOut

Ah, habe das Logarithmus-Gesetz falsch angewandt.
Vielen Dank fürs Korrekturlesen/rechnen.

Bezug
        
Bezug
Fragen zu einigen DGLen: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:20 Mi 13.07.2011
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]