matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMaschinenbauFragen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Maschinenbau" - Fragen
Fragen < Maschinenbau < Ingenieurwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Maschinenbau"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Fragen: Trägheitsmoment, Verdrehwinkel
Status: (Frage) beantwortet Status 
Datum: 21:36 Di 10.02.2009
Autor: Realbarca

Abend,

ich hab noch ein paar Verständnisfragen. Und zwar, wenn man das Trägsheitsmoment berechen möchte. Wie berechnet man dann nochmal Ixiyi...zB. für Rechtecke.
Die Formel kann ich nirgends finden, aber wir haben mal angesprochen, dass es für symmetrische Bauteile immer 0 sei.


Dann wollte ich nochmal wissen. Die allgemeine Formel zur Berechnung des Verdrehwinkels lautet ja:

[mm] \alpha=\bruch{Ttl}{Gr}* \bruch{180}{\pi} [/mm] (G Schubmodul, r Radius des Stabes)

Ist G eine konstante Größe, oder kann man es berechnen. Bei einer Aufgabe war es, die Hälfte des Durchmessers?  Ist dass immer so...oder war dass Zufall?

Anschließend wollte ich noch, wissen, wann die Formel für die Biegespannung:  

[mm] \partial=\bruch{Mb}{Wx} [/mm] also [mm] \bruch{Mb}{bh²/6} [/mm] lautet,

und wann sie
[mm] \partial=\bruch{Mb}{Wp} [/mm] also [mm] \bruch{Mb}{0,1d³} [/mm] lautet?

Nach meinem Verständnis gilt doch Erstere Formel nur, wenn Biegung die einzige Spannung ist. Und die zweite Formel müsste dann doch gelten, wenn es eine zusammengesetzte Beanspruchung zwischen Biegung und Torsion ist, oder??


Danke euch schonmal,

Gruß

        
Bezug
Fragen: einige Antworten
Status: (Antwort) fertig Status 
Datum: 21:40 Di 10.02.2009
Autor: Loddar

Hallo Realbarca!



> Ist G eine konstante Größe, oder kann man es berechnen.

Das Schubmodul ist eine materialabhängige Konstante.

  

> Anschließend wollte ich noch, wissen, wann die Formel für
> die Biegespannung:  
>
> [mm]\partial=\bruch{Mb}{Wx}[/mm] also [mm]\bruch{Mb}{bh²/6}[/mm] lautet,

einachsige Biegung an einem Rechteckquerschnitt

  

> und wann sie
> [mm]\partial=\bruch{Mb}{Wp}[/mm] also [mm]\bruch{Mb}{0,1d³}[/mm] lautet?

Das kenne ich nicht; muss evtl. ein Sonderfall sein.

  
Gruß
Loddar


Bezug
        
Bezug
Fragen: Flächenzentrifugalmoment
Status: (Antwort) fertig Status 
Datum: 21:45 Di 10.02.2009
Autor: Loddar


> ich hab noch ein paar Verständnisfragen. Und zwar, wenn man
> das Trägsheitsmoment berechen möchte. Wie berechnet man
> dann nochmal Ixiyi...zB. für Rechtecke.

Das Flächenzentrifugalmoment [mm] $I_{yz}$ [/mm] ist für doppeltsymmetrische Querschnitte Null.

Die allgemeine Formel lautet:

[mm] $$I_{yz} [/mm] \ = \ [mm] \integral{y*z \ dA}$$ [/mm]

Gruß
Loddar


Bezug
                
Bezug
Fragen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:04 Mi 11.02.2009
Autor: Realbarca

Danke dir,

von dir kann man noch viel lernen. ;)


Gruß

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Maschinenbau"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]