matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenZahlentheorieFrage zur Kongruenz
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Zahlentheorie" - Frage zur Kongruenz
Frage zur Kongruenz < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Frage zur Kongruenz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:55 Mo 06.06.2011
Autor: Sin777

Hallo, ich sitze gerade vor einem Beweis und bin mir eigentlich ziemlich sicher, dass ich ihn fast fertig habe. Meine Frage:

Ich weiß nun, dass Folgendes gilt [mm] k^{(p_{1}-1)*...*(p_{r}-1)} \equiv [/mm] 1 (mod n) und ich weiß, dass n-1 [mm] \equiv [/mm] 0 (mod [mm] p_{i}-1) [/mm] ist (i=1,...,r). (p [mm] \in \IP) [/mm]
Ich möchte nun aus diesem Wissen schließen, dass [mm] k^{n-1} \equiv [/mm] 1 (mod n) gilt. Warum kann ich das machen? Was steckt da dahinter?

        
Bezug
Frage zur Kongruenz: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 07:30 Mo 06.06.2011
Autor: angela.h.b.


> Hallo, ich sitze gerade vor einem Beweis

Hallo,

möglicherweise wäre es nicht ungeschickt, mal zu sagen, was Du eigentlich beweisen möchtest.

> und bin mir
> eigentlich ziemlich sicher, dass ich ihn fast fertig habe.
> Meine Frage:
>  
> Ich weiß nun, dass Folgendes gilt
> [mm]k^{(p_{1}-1)*...*(p_{r}-1)} \equiv[/mm] 1 (mod n) und ich weiß,
> dass n-1 [mm]\equiv p_{i}-1[/mm] (mod n) ist (i=1,...,r). (p [mm]\in \IP)[/mm]

Dann ist [mm] n=p_i. [/mm]

Gruß v. Angela


>  
> Ich möchte nun aus diesem Wissen schließen, dass [mm]k^{n-1} \equiv[/mm]
> 1 (mod n) gilt. Warum kann ich das machen? Was steckt da
> dahinter?


Bezug
                
Bezug
Frage zur Kongruenz: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:32 Mo 06.06.2011
Autor: Sin777

Tut mir leid, ich habe mich im Aufgabentext verschrieben. Ich habe es nun korrigiert. Ich möchte genau das zeigen, was nun in überarbeiteter Version dasteht :)

Bezug
        
Bezug
Frage zur Kongruenz: Antwort
Status: (Antwort) fertig Status 
Datum: 11:02 Mo 06.06.2011
Autor: reverend

Hallo Sin777,

ich sehe gerade noch nicht, wie das zu folgern ist, aber wenn, dann wirst Du auf jeden Falls den []Satz von Euler-Fermat dazu benötigen.
Damit kannst Du auf jeden Fall triviale von nicht-trivialen Fällen unterscheiden.
Hier ein nicht-trivialer:
Seien die [mm] p_i [/mm] folgende: 3,5,7,13,19 und n=1729=7*13*19
Dann sind alle Deine Bedingungen erfüllt, wenn k und n teilerfremd sind. Aber selbst das ist nicht sooo einfach zu zeigen.

Kennst Du Dich schon mit der Eulerschen [mm]\Phi[/mm]-Funktion aus?

Grüße
reverend


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]