matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationFrage zur Integralaufstellung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Integration" - Frage zur Integralaufstellung
Frage zur Integralaufstellung < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Frage zur Integralaufstellung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:30 Do 06.11.2008
Autor: Surfer

Hallo, bei folgender Aufgabe fehlt mir irgendwie der Ansatz wie ich hier das dreifache Integral aufstellen muss?
Darum bitte ich um Hilfe...
[Dateianhang nicht öffentlich]

Danke für Hilfe im voraus!
lg Surfer

Dateianhänge:
Anhang Nr. 1 (Typ: jpg) [nicht öffentlich]
        
Bezug
Frage zur Integralaufstellung: Antwort
Status: (Antwort) fertig Status 
Datum: 15:28 Sa 08.11.2008
Autor: MathePower

Hallo Surfer,

> Hallo, bei folgender Aufgabe fehlt mir irgendwie der Ansatz
> wie ich hier das dreifache Integral aufstellen muss?
>  Darum bitte ich um Hilfe...
>  [Dateianhang nicht öffentlich]


Bestimme zunächst die Integrationsgrenzen.

Betrachte die beiden Gleichungen

[mm]x^{2}+y^{2}=r^{2}, \ 0\le r < 1[/mm]

[mm]x^{2}+z^{2}=s^{2}, \ 0\le s < 1[/mm]

Führt man Polarkoorinaten ein, so ergibt sich aus ersterer Gleichung:

[mm]x=r*\cos\left(\varphi\right)[/mm]

[mm]y=r*\sin\left(\varphi\right)[/mm]

Dies in die zweite Gleichung eingesetzt, liefert die Parameterdarstellung für z.

Natürlich werden jetzt die Grenzen durch die Paramter [mm]\varphi, \ r,\ s [/mm] bestimmt.


>  
> Danke für Hilfe im voraus!
>  lg Surfer


Gruß
MathePower

Bezug
                
Bezug
Frage zur Integralaufstellung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:00 So 09.11.2008
Autor: Surfer

Hi danke mal für deinen Ansatz,

dann hätte ich ja jetzt dastehen:

[mm] \integral_{-r*cos\rho}^{r*cos\rho} [/mm] ( [mm] {\integral_{-r*sin\rho}^{r*sin\rho} ( {\integral_{-\wurzel{s^{2}-(r*cos\rho)^{2}}}^{\wurzel{s^{2}-(r*cos\rho)^{2}} }}} [/mm] f(x,y,z) dz)dy)dx

Und was setzte ich hier jetzt als Funktion ein Z1 [mm] \cap [/mm] Z2 ?

lg Surfer

Bezug
                        
Bezug
Frage zur Integralaufstellung: Antwort
Status: (Antwort) fertig Status 
Datum: 15:20 So 09.11.2008
Autor: MathePower

Hallo Surfer,

> Hi danke mal für deinen Ansatz,
>
> dann hätte ich ja jetzt dastehen:
>  
> [mm]\integral_{-r*cos\rho}^{r*cos\rho}[/mm] (
> [mm]{\integral_{-r*sin\rho}^{r*sin\rho} ( {\integral_{-\wurzel{s^{2}-(r*cos\rho)^{2}}}^{\wurzel{s^{2}-(r*cos\rho)^{2}} }}}[/mm]
> f(x,y,z) dz)dy)dx


Zunächst einmal muß Du Dir darüber klar werden, welcher Parameter von wo nach wo läuft.

Dann sind das Polarkoordinaten, das heißt das Volumenintegral transformiert sich entsprechend:

[mm]V=\integral_{\rho_{1}}^{\rho_{2}}{\integral_{r_{1}\left(\rho\right)}^{r_{2}\left(\rho\right)}{r*z\left(r,\rho\right)} \ dr} \ d\rho}[/mm]


>  
> Und was setzte ich hier jetzt als Funktion ein Z1 [mm]\cap[/mm] Z2
> ?.

>  
> lg Surfer


Gruß
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]