matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMengenlehreFrage zum Thema Bijektion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Mengenlehre" - Frage zum Thema Bijektion
Frage zum Thema Bijektion < Mengenlehre < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Frage zum Thema Bijektion: Bijektion
Status: (Frage) beantwortet Status 
Datum: 15:50 Mi 25.11.2009
Autor: Rheinsi

Habe nur eine schnelle triviale Frage, bin mir aber komischerweise nicht sicher!

Folgende Situation:

Ich weiß:

1.) f : A -> B injektiv
2.) B [mm] \subset [/mm] A

Daraus folgt doch automatisch, dass f bijektiv ist, oder? (demnach auch |A| = |B| )

Bitte um schnelle Antwort (Bestätigung)

        
Bezug
Frage zum Thema Bijektion: Antwort
Status: (Antwort) fertig Status 
Datum: 15:59 Mi 25.11.2009
Autor: fred97


> Habe nur eine schnelle triviale Frage, bin mir aber
> komischerweise nicht sicher!
>  
> Folgende Situation:
>  
> Ich weiß:
>  
> 1.) f : A -> B injektiv
> 2.) B [mm]\subset[/mm] A
>  
> Daraus folgt doch automatisch, dass f bijektiv ist, oder?

Nein ! Beispiel: A = B = [mm] \IR, [/mm] $f(x) = [mm] e^x$ [/mm]

Falls Du mit B [mm]\subset[/mm] A meinen soltest: B [mm]\subseteq[/mm] A und B [mm] \not= [/mm] A, so nimm dieses Beispiel:

            A = [mm] \IR, [/mm] B = (0, [mm] \infty) \cup [/mm] {-17}, $f(x) = [mm] e^x$ [/mm]




> (demnach auch |A| = |B| )
>  
> Bitte um schnelle Antwort (Bestätigung)  


War die Antwort schnell genug ? Wenn Du demnächst wieder einmal etwas auf die Schnelle brauchst (z.B. Klopapier), so sag Bescheid und fred ist zur Stelle.

der schnelle FRED

Bezug
                
Bezug
Frage zum Thema Bijektion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:03 Mi 25.11.2009
Autor: Rheinsi

ok, weiß zusätzlich ker(f) = 0
A, B sind Ringe

Bezug
                        
Bezug
Frage zum Thema Bijektion: Antwort
Status: (Antwort) fertig Status 
Datum: 16:11 Mi 25.11.2009
Autor: fred97


> ok, weiß zusätzlich ker(f) = 0
>  A, B sind Ringe

Witzbold !




Bevor wir Gefahr laufen, dass Du uns noch einige weitere Informationen vorenthalten hast, gib bitte die vollständige Aufgabenstellung bekannt !
(Falls Du es nicht zu eilig hast)

FRED

Bezug
                                
Bezug
Frage zum Thema Bijektion: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 16:24 Mi 25.11.2009
Autor: Rheinsi

Also Aufgabenstellung ist folgende:

Es sei R ein kommutativer Ring, R[x] der Polynomring und a [mm] \subseteq [/mm] R ein Ideal. Es bezeichne aR[x] das von a erzeugte Ideal von R[x] und R/a [x] den Polynomring über dem Quotientenring R/a. Man zeige die Existenz eines Ringisomorphismus

R[x]/aR[x] [mm] \cong [/mm] R/a [x]

Habe erstmal gezeigt, das R/a [x] [mm] \subseteq [/mm] R[x]/aR[x] !
Dann habe ich mir einen Ringhomomorphismus gebastelt wie folgt:

f [mm] (a*(a_{n}*x_{n} [/mm] + ....... + [mm] a_{0}) [/mm] + [mm] (b_{m}*x_{m} [/mm] + ....... + [mm] b_{0}) [/mm] = [mm] \summe_{i=1}^{max(n,m)} (b_{i}+a*a_{i})*x_{i} [/mm]  wobei [mm] b_{i} [/mm] = 0 für i>m und [mm] a_{i} [/mm] = 0 für i>n.

Somit ist ker(f)=0.

Nun habe ich den Homomorphiesatz angewendet, so das es einen Ringhomomorphismus g von (R[x]/aR[x])/0 -> R/a [x] gibt, der injektiv ist, da ker(f) = 0.
da (R[x]/aR[x])/0 = R[x]/aR[x] habe ich ne injektive Abbildung von R[x]/aR[x] -> R/a [x] und damit folgt

(für mich) mit R/a [x] [mm] \subseteq [/mm] R[x]/aR[x] das g auch ne Bijektion ist!

Bezug
                                        
Bezug
Frage zum Thema Bijektion: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:20 Fr 27.11.2009
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]