matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenFrage zu Summenzeichenaufgabe
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Folgen und Reihen" - Frage zu Summenzeichenaufgabe
Frage zu Summenzeichenaufgabe < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Frage zu Summenzeichenaufgabe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:00 Mi 25.10.2006
Autor: Dominik_Remy

Aufgabe
Für eine natürliche Zahl n [mm] \in \IN [/mm] sei M(n) =( [mm] \summe_{k=1}^{n} [/mm] k)² und m(n) = [mm] \summe_{k=1}^{n} [/mm] k² . Geben sie für die folgende Summe eine Formel in Abhängigkeit von M(n) und m(n) an:

S(n) =$ [mm] \summe_{k}^{} [/mm]  $ i*j

wobei man für k => 1<=i<=j<=n einsetzen muss  !

?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hallo Leute.

Das ist also nun die Aufgabe.

Was ich bisher erarbeitet habe:

M(n) =( [mm] \summe_{k=1}^{n} [/mm] k)² ist wenn man so sagen mag die Summe aller Wertepaare(eigentlich ja Produkte) =>
1*1 + 1*2 +...+1*n +
2*1 + 2*2 +...+2*n +
.
.
.
n*1 + n*2 +...+ n*n

m(n) = [mm] \summe_{k=1}^{n} [/mm] k² ist folgende Summe: 1*1 + 2*2 +...+ n*n

S(n) ist für i=j=1 = M(n)
falls i oder j ungleich von 1 sind dann ist S(n) < M(n).

Meine Überlegung war, dass dann nachher irgendsowas wie:
S(n) = M(n) - ***

allerdings müsste ich ja dann eine Summe in Abhängigkeit von i oder j abziehen. Da liegt mein Problem.

Hoffe ihr habt verstanden worauf ich hinausmöchte und könnt mir ein wenig weiterhelfen. Ich möchte auf gar keinen Fall eine komplette Lösung sondern eher ein Denkanstoss.

Danke schonmal

Gruß Doominik



        
Bezug
Frage zu Summenzeichenaufgabe: Antwort
Status: (Antwort) fertig Status 
Datum: 13:48 Do 26.10.2006
Autor: angela.h.b.


> Für eine natürliche Zahl n [mm]\in \IN[/mm] sei M(n) =(
> [mm]\summe_{k=1}^{n}[/mm] k)² und m(n) = [mm]\summe_{k=1}^{n}[/mm] k² . Geben
> sie für die folgende Summe eine Formel in Abhängigkeit von
> M(n) und m(n) an:
>  
> S(n) =[mm] \summe_{k}^{} [/mm] i*j
>  
> wobei man für k => 1<=i<=j<=n einsetzen muss  !

Hallo,

vielleicht hilft Dir das schon weiter:

[mm] \summe_{1\le i\le j\le n}i*j [/mm]

[mm] =\summe_{j=1}^{n}1*j +\summe_{j=2}^{n}2*j [/mm] + [mm] \summe_{j=3}^{n}3 [/mm] *j + ... + [mm] \summe_{j=n-1}^{n}(n-1)*j +\summe_{j=n}^{n}n*j [/mm]

Gruß v. Angela

Bezug
                
Bezug
Frage zu Summenzeichenaufgabe: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 16:10 Do 26.10.2006
Autor: Dominik_Remy

Hallo.

Ich bin durch diesen Ansatz darauf gekommen, dass S(n) = 1/2 * (M(n) + m(n)) ist.
Allerdings weiss ich immer noch nicht wie ich dies herleiten kann.

Für eine Antwort wäre ich sehr dankbar.

Gruß
Dominik

Bezug
                        
Bezug
Frage zu Summenzeichenaufgabe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:16 Do 26.10.2006
Autor: Dominik_Remy

Hallo.

Ok bin draufgekommen.

Danke !

Gruß
Dominik

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]