matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisFrage zu "Nullfolgen"
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Analysis" - Frage zu "Nullfolgen"
Frage zu "Nullfolgen" < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Frage zu "Nullfolgen": Wie beweisen?
Status: (Frage) beantwortet Status 
Datum: 16:08 Do 10.11.2005
Autor: Commotus

Hallo,
ich soll zeigen, ob die Folge [mm] c_n [/mm] =  [mm] \bruch{n^2}{n+2} [/mm] eine Nullfolge ist oder nicht. Offensichtlich divergiert die Folge und somit kann sie keine Nullfolge sein. Wie widerlege ich, dass es sich hierbei um eine Nullfolge handelt? Die Grenzwertsätze für konvergente Folgen darf ich ja nicht anwenden, da die Folge divergiert und die Sätze nur für konvergente Folgen gelten.

        
Bezug
Frage zu "Nullfolgen": Antwort
Status: (Antwort) fertig Status 
Datum: 16:16 Do 10.11.2005
Autor: Herby

Hallo Commotus,

vielleicht solltest du das hier lesen: Antwort von Infinit

Liebe Grüße
Herby

Bezug
                
Bezug
Frage zu "Nullfolgen": Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:20 Do 10.11.2005
Autor: Commotus

Die Antwort hilft mir leider nicht viel weiter, da ich zeigen(!) soll, dass es sich hierbei um keine Nullfolge handelt - also anhand von mathematischen Ausdrucken beweisen soll, dass es keine Nullfolge ist. Argumentativ (mit Worten) habe ich verstanden, was zu tun ist und stimme mit Infinit überein, doch wie schreibe ich es mathematisch korrekt auf? Darum gehts mir.. ;-)

Bezug
                        
Bezug
Frage zu "Nullfolgen": Antwort
Status: (Antwort) fertig Status 
Datum: 16:52 Do 10.11.2005
Autor: Herby

Hallo nochmal,

eine Zahlenfolge hat doch dann einen Grenzwert und ist damit konvergent wenn gilt:

[mm] c=\limes_{n\rightarrow\infty}c_{n} [/mm]

und sie ist divergent, wenn gilt:

[mm] \pm \infty =\limes_{n\rightarrow\infty}c_{n} [/mm]

du brauchst dann nur zu zeigen:

[mm] \limes_{n\rightarrow\infty}c_{n}=....=....=+\infty [/mm]


Liebe Grüße
Herby

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]