Frage zu Lösung < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 21:17 So 28.12.2008 | Autor: | Surfer |
Hallo, ich habe hier eine Reihenaufgabe bei der ich jedoch nicht auf die Lösung komme, und zwar:
[mm] \summe_{k=1}^{\infty}[\bruch{1}{k!} [/mm] + [mm] (\bruch{1}{4})^{k} [/mm] ]
herauskommen soll = e-2/3
also ich bin jetzt folgendermaßen vorgegangen, man hat ja zwei reihen zu betrachten 1/k! hat den Limes e und die hintere Reihe hat 1/4 + 4/3 oder?
Mein problem ist nur wie ich auf den negativen teil bei der Grenzwertberechnung komme?
lg Surfer
|
|
|
|
Hallo Surfer,
> Hallo, ich habe hier eine Reihenaufgabe bei der ich jedoch
> nicht auf die Lösung komme, und zwar:
> [mm]\summe_{k=1}^{\infty}[\bruch{1}{k!}[/mm] + [mm](\bruch{1}{4})^{k}[/mm]
> ]
>
> herauskommen soll = e-2/3
>
> also ich bin jetzt folgendermaßen vorgegangen, man hat ja
> zwei reihen zu betrachten 1/k! hat den Limes e und die
> hintere Reihe hat 1/4 + 4/3 oder?
Jein, beachte, dass deine Reihe erst bei [mm] $\red{k=1}$ [/mm] losläuft, die Exponentialreihe mit [mm] $\sum\limits^{\infty}_{\blue{k=0}}\frac{1}{k!}$ [/mm] hat den Wert $e$, deine läuft bei $k=1$ los, du musst also noch den Summanden für $k=0$ wieder abziehen, das ist [mm] $\frac{1}{0!}=1$
[/mm]
Also hat der erste Teil den Wert $e-1$
Ebenso beim zweiten Teil, die geometrische Reihe [mm] $\sum\limits^{\infty}_{\blue{k=0}}\left(\frac{1}{4}\right)^k$ [/mm] hat den Wert [mm] $\frac{1}{1-\frac{1}{4}}=\frac{4}{3}$
[/mm]
Auch hier musst du den Wert wieder deinem erhöhten Laufindex anpassen und den Summanden für $k=0$, also [mm] $\left(\frac{1}{4}\right)^0=1$ [/mm] abziehen
Was ergibt sich also insgesamt?
>
> Mein problem ist nur wie ich auf den negativen teil bei der
> Grenzwertberechnung komme?
Laufindex beachten!
>
> lg Surfer
>
Gruß
schachuzipus
|
|
|
|