matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionalanalysisFrage zu Fourieranalysis
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Funktionalanalysis" - Frage zu Fourieranalysis
Frage zu Fourieranalysis < Funktionalanalysis < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Frage zu Fourieranalysis: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 12:26 Do 15.09.2011
Autor: Haiza

Aufgabe
$ [mm] g_2(t)=-\bruch{1}{2} \cdot e^{i4\omega t} [/mm] $

Hallo,
laut meinen "Berechnungen" bzw ablesen ist  $ [mm] c_4=-\bruch{1}{2} [/mm] $. Laut der angegeben Lösungen (die aber von anderen Studenten sind) ist die Lösung jedoch $ [mm] c_4=-\bruch{1}{4}+\bruch{i}{4} [/mm] $.
Wie kann das sein?

Gruß und Danke im Voraus!

        
Bezug
Frage zu Fourieranalysis: Antwort
Status: (Antwort) fertig Status 
Datum: 12:42 Do 15.09.2011
Autor: leduart

Hallo
deine Frage ist unverständlich. Was soll [mm] c_4 [/mm] denn sein? und was hat es mit [mm] g_2 [/mm] zu tun?
Versuch die Aufgabe klar zu machen. suchst du die Fourrierreihe zu [mm] g_2(t) [/mm]
Gruss leduart


Bezug
                
Bezug
Frage zu Fourieranalysis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:08 Do 15.09.2011
Autor: Haiza

$ [mm] g_2(t) [/mm] $ ist die Funktion. Der Fourierkoeffizient für n=4 lässt sich ablesen und meine Lösung entspricht nicht der Lösungen die uns vorgegeben wurde von älteren Mitstudierenden und daher meine Frage, welche Lösung richtig ist und wieso.

Gruß

Bezug
                        
Bezug
Frage zu Fourieranalysis: Antwort
Status: (Antwort) fertig Status 
Datum: 13:16 Do 15.09.2011
Autor: fred97


> [mm]g_2(t)[/mm] ist die Funktion. Der Fourierkoeffizient für n=4
> lässt sich ablesen und meine Lösung entspricht nicht der
> Lösungen die uns vorgegeben wurde von älteren
> Mitstudierenden und daher meine Frage, welche Lösung
> richtig ist

Deine.


> und wieso.

Es ist

   $ [mm] \displaystyle c_4 =\frac1T\int_{c}^{c+T} g_2(t) \mathrm{e}^{-\mathrm{i}4\omega t} [/mm] dt $

FRED

>  
> Gruß


Bezug
                                
Bezug
Frage zu Fourieranalysis: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:21 Do 15.09.2011
Autor: Haiza

Danke!

Gruß

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]