matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-SonstigesFrage zu Brüchen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Sonstiges" - Frage zu Brüchen
Frage zu Brüchen < Sonstiges < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Frage zu Brüchen: Lösungsansatz
Status: (Frage) beantwortet Status 
Datum: 11:43 Sa 16.01.2010
Autor: jar

Aufgabe
In einem Raum sind genau [mm] \bruch{3}{7} [/mm] der Menschen unter 21 und genau [mm] \bruch{5}{13} [/mm] der Menschen sind über 65. Wenn die Gesamtzahl der Menschen im Raum größer 50 aber kleiner 100 ist, wie viele Menschen sind in dem Raum unter 21 Jahren.

Ich komme mit dieser Aufgabe überhaupt nicht klar. Die Lösung soll 39 sein, aber ich komme auf keinen Ansatz. Besonders verwirrend finde ich, dass die Zahl zwischen 50 und 100 ist.

Kann mir jemand eine Hilfestellung geben, damit ich zumindest einen Ansatz hinbekomme?

Danke

        
Bezug
Frage zu Brüchen: Randbedingung: ganzer Mensch
Status: (Antwort) fertig Status 
Datum: 12:09 Sa 16.01.2010
Autor: Infinit

Hallo jar,
die Randbedingung bei dieser Aufgabe ist es, dass die Anzahl der Menschen im Raum ganzzahling und dass alle Altersgruppen auch aus einer ganzen Anzahl von Menschen bestehen. Rechne doch zuerst mal aus, welcher Anteil der Personen im Raum demzufolge zwischen 21 und 65 ist, ich bekam 5 /21 dafür raus.
Wenn dies stimmt (ich hoffe mal), dann musst Du als nächstes testen, für welche ganze Zahl n die Anteile 3n/7, 5n/21 und 5n/15 ganzzahlige Ergebnisse liefern. Hier gibt es mehrere Lösungen, deswegen der Hinweis, dass die Gesamtanzahl zwischen 50 und 100 liegt. Solche Gleichungen nennt man diophantische Gleichungen.
Viel Spaß beim Rechnen,
Infinit

Bezug
        
Bezug
Frage zu Brüchen: Idee
Status: (Antwort) fertig Status 
Datum: 12:20 Sa 16.01.2010
Autor: Mampf

Hi!

Ich bin so drangegangen:

Am einfachsten erstmal einen "Überblick" verschaffen.

Der wievielte Anteil an "jungen" Menschen von der  Gesamtanzahl gibt es relativ zu den "älteren"?

Dazu muesste man Vergleichen: Ist die Anzahl kleiner. größer oder gleich?

Um Brüche zu vergleichen muss man sie auf den selben Nenner bringen...

Daraus ergibt sich die Gesamtanzahl, die zwischen 50 und 100 liegt.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]