matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFourier-TransformationFouriertransformierte von rect
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Fourier-Transformation" - Fouriertransformierte von rect
Fouriertransformierte von rect < Fourier-Transformati < Transformationen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Fourier-Transformation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Fouriertransformierte von rect: Verständnisprob. Rechnung
Status: (Frage) beantwortet Status 
Datum: 17:39 So 28.12.2008
Autor: energizer

Folgendes Beispiel: Ich habe ein Rechteckimpuls der Breite T und der Höhe A

T geht von [mm] -\bruch{T}{2} [/mm] bis [mm] +\bruch{T}{2} [/mm]
f(t)=A*rect(t/T) davon soll die Fouriertransformierte bestimmt werden.

[mm] F({\omega})=\integral_{-({infty})}^{{\infty}}{A*e^{-j{\omega}t} d{\omega}} [/mm]
[mm] =A*\integral_{-\bruch{T}{2}}^{\bruch{T}{2}}{e^{-j{\omega}t} d{\omega}} [/mm]

[mm] =A*[\bruch{e^{-j{\omega}t}}{-j{\omega}}] [/mm] (Grenzen von -T/2 - +T/2)

bis hierhin hab ich alles so wie im Beispiel hinbekommen

Nach dem Einsetzen der Grenzen steht im Script ->

[mm] =\bruch{A}{-j{\omega}}*2j*\bruch{e^{-j{\omega}\bruch{T}{2}}-e^{j{\omega}\bruch{T}{2}}}{2j} [/mm]

Wenn ich die Grenzen einsetze bekomme ich das raus ->

[mm] =\bruch{A}{-j{\omega}}*(e^{-j{\omega}\bruch{T}{2}}-e^{j{\omega}\bruch{T}{2}}) [/mm]

Wie kommt man darauf, kann mir einer das erklären?
Im Grunde wurde einfach mit 2j multipliziert aber warum? Es kürzt sich ja im Endeffekt raus...

Und den letzten Schritt(siehe Link [mm] \bruch{\bruch{T}{2}*2A}{{\omega}\bruch{T}{2}}*sin({\omega}\bruch{T}{2}) [/mm] kann ich irgendwie nicht nachvollziehen, kleine Vorahnung hab ich, das man vielleicht mit [mm] e^{j*w*t}=cos(w*t)+jsin(w*t) [/mm] zum Ziel kommt?

Wäre nett wenn mir einer den Rechenweg erklärt.

Hier der Ausschnitt aus dem Script:
[]klickmich

Mfg

        
Bezug
Fouriertransformierte von rect: Antwort
Status: (Antwort) fertig Status 
Datum: 18:36 So 28.12.2008
Autor: MathePower

Hallo energizer,

> Folgendes Beispiel: Ich habe ein Rechteckimpuls der Breite
> T und der Höhe A
>  
> T geht von [mm]-\bruch{T}{2}[/mm] bis [mm]+\bruch{T}{2}[/mm]
> f(t)=A*rect(t/T) davon soll die Fouriertransformierte
> bestimmt werden.
>  
> [mm]F({\omega})=\integral_{-({infty})}^{{\infty}}{A*e^{-j{\omega}t} d{\omega}}[/mm]
>  
> [mm]=A*\integral_{-\bruch{T}{2}}^{\bruch{T}{2}}{e^{-j{\omega}t} d{\omega}}[/mm]
>  
> [mm]=A*[\bruch{e^{-j{\omega}t}}{-j{\omega}}][/mm] (Grenzen von -T/2
> - +T/2)
>  
> bis hierhin hab ich alles so wie im Beispiel hinbekommen
>  
> Nach dem Einsetzen der Grenzen steht im Script ->
>  
> [mm]=\bruch{A}{-j{\omega}}*2j*\bruch{e^{-j{\omega}\bruch{T}{2}}-e^{j{\omega}\bruch{T}{2}}}{2j}[/mm]
>  
> Wenn ich die Grenzen einsetze bekomme ich das raus ->
>  
> [mm]=\bruch{A}{-j{\omega}}*(e^{-j{\omega}\bruch{T}{2}}-e^{j{\omega}\bruch{T}{2}})[/mm]
>  
> Wie kommt man darauf, kann mir einer das erklären?
>  Im Grunde wurde einfach mit 2j multipliziert aber warum?
> Es kürzt sich ja im Endeffekt raus...


Die ganze Trickserei, d.h. das Erweitern mit einer künstlichen Eins ([mm]\bruch{2j}{2j}[/mm] bzw. [mm]\bruch{\bruch{T}{2}}{\bruch{T}{2}}[/mm])
wurde nur gemacht um dann die im Skript in der letzten Zeile stehenden Funktion
[mm]\operatorname{si}\left(x\right)[/mm] definieren zu können.


>  
> Und den letzten Schritt(siehe Link
> [mm]\bruch{\bruch{T}{2}*2A}{{\omega}\bruch{T}{2}}*sin({\omega}\bruch{T}{2})[/mm]
> kann ich irgendwie nicht nachvollziehen, kleine Vorahnung
> hab ich, das man vielleicht mit
> [mm]e^{j*w*t}=cos(w*t)+jsin(w*t)[/mm] zum Ziel kommt?


So ist es.


>  
> Wäre nett wenn mir einer den Rechenweg erklärt.
>
> Hier der Ausschnitt aus dem Script:
>  []klickmich
>  
> Mfg


Gruß
MathePower

Bezug
                
Bezug
Fouriertransformierte von rect: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:09 So 28.12.2008
Autor: energizer

Hi danke erstma, noch ne Frage und zwar ist den [mm] e^{-jwt}=cos(-w*t)+jsin(-w*t)? [/mm]

bin mir da nicht so sicher bzw. weiß nicht mehr wie man das genau umwandelt.

Mfg

Bezug
                        
Bezug
Fouriertransformierte von rect: Antwort
Status: (Antwort) fertig Status 
Datum: 19:13 So 28.12.2008
Autor: MathePower

Hallo energizer,

> Hi danke erstma, noch ne Frage und zwar ist den
> [mm]e^{-jwt}=cos(-w*t)+jsin(-w*t)?[/mm]


Ja, und da

[mm]\cos\left(-w*t\right)=\cos\left(w*t\right)[/mm]

gilt

[mm]e^{-jwt}=\cos\left(w*t\right)-j*\sin\left(w*t\right)[/mm]


>  
> bin mir da nicht so sicher bzw. weiß nicht mehr wie man das
> genau umwandelt.
>  
> Mfg


Gruß
MathePower


Bezug
                
Bezug
Fouriertransformierte von rect: Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:02 So 28.12.2008
Autor: energizer

Danke habs hinbekommen.

Mfg

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Fourier-Transformation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]