matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFourier-TransformationFouriertransformierte Exp
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Fourier-Transformation" - Fouriertransformierte Exp
Fouriertransformierte Exp < Fourier-Transformati < Transformationen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Fourier-Transformation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Fouriertransformierte Exp: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:19 Mo 26.11.2012
Autor: BunDemOut

Aufgabe
Bestimmen Sie die Fourier-Tranformierte [mm] F(\omega) [/mm] von:

[mm] f(t)=\begin{cases} e^{-t}, & \mbox{für } t >0 \\ -e^t, & \mbox{für } t <0 \end{cases} [/mm]

Ansatz:

[mm] Ff(\omega)=\bruch{1}{\wurzel{2\pi}}\integral_{-\infty}^{\infty}{f(t)*e^{-iwt} dt}=\bruch{1}{\wurzel{2\pi}} *(-\integral_{-\infty}^{0}{e^t*e^{-iwt} dt}+\integral_{0}^{\infty}{e^{-t}*e^{-iwt} dt}) [/mm]

Für das erste Integral habe ich:
[mm] \integral_{-\infty}^{0}{e^t*e^{-iwt} dt}=-\bruch{1}{1-i\omega}*e^{t-i \omega t}|^{0}_{-\infty}=-(\bruch{1}{1-i\omega} e^0 [/mm] - [mm] \bruch{1}{1-i\omega} \limes_{t\rightarrow-\infty} e^{t-i\omega t})=-\bruch{1}{1-i\omega} [/mm]

Das andere Integral habe ich analog behandelt und komme letztendlcih auf
[mm] Ff(\omega)=-\bruch{1}{\wurzel{2 \pi}} \bruch{2 i \omega}{\omega^2+1} [/mm]

Kann mir jemand sagen ob das so stimmt?
Ich denke nicht, dass das Einsetzen der 0 so ok ist wie ich es gemacht habe... Müsste man hier auch einen Grenzwert bilden?

Vielen Dank fürs drüberschauen und helfen

        
Bezug
Fouriertransformierte Exp: Antwort
Status: (Antwort) fertig Status 
Datum: 16:10 Di 27.11.2012
Autor: MathePower

Hallo BunDemOut,

> Bestimmen Sie die Fourier-Tranformierte [mm]F(\omega)[/mm] von:
>  
> [mm]f(t)=\begin{cases} e^{-t}, & \mbox{für } t >0 \\ -e^t, & \mbox{für } t <0 \end{cases}[/mm]
>  
> Ansatz:
>  
> [mm]Ff(\omega)=\bruch{1}{\wurzel{2\pi}}\integral_{-\infty}^{\infty}{f(t)*e^{-iwt} dt}=\bruch{1}{\wurzel{2\pi}} *(-\integral_{-\infty}^{0}{e^t*e^{-iwt} dt}+\integral_{0}^{\infty}{e^{-t}*e^{-iwt} dt})[/mm]
>  
> Für das erste Integral habe ich:
>  [mm]\integral_{-\infty}^{0}{e^t*e^{-iwt} dt}=-\bruch{1}{1-i\omega}*e^{t-i \omega t}|^{0}_{-\infty}=-(\bruch{1}{1-i\omega} e^0[/mm]
> - [mm]\bruch{1}{1-i\omega} \limes_{t\rightarrow-\infty} e^{t-i\omega t})=-\bruch{1}{1-i\omega}[/mm]
>  
> Das andere Integral habe ich analog behandelt und komme
> letztendlcih auf
>  [mm]Ff(\omega)=-\bruch{1}{\wurzel{2 \pi}} \bruch{2 i \omega}{\omega^2+1}[/mm]
>  
> Kann mir jemand sagen ob das so stimmt?


Das stimmt. [ok]


>  Ich denke nicht, dass das Einsetzen der 0 so ok ist wie
> ich es gemacht habe... Müsste man hier auch einen
> Grenzwert bilden?
>


Ja, da f(t) an der Stelle t=0 unstetig ist.


> Vielen Dank fürs drüberschauen und helfen


Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Fourier-Transformation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]