matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Komplexe AnalysisFouriertransformation
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Komplexe Analysis" - Fouriertransformation
Fouriertransformation < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Fouriertransformation: Frage
Status: (Frage) beantwortet Status 
Datum: 15:23 So 28.08.2005
Autor: Cardmaker

Hallo,

ich lese gerade die Bände "Höhere Mathematik für Ing." und bin im 3. Band bei einem Beweis zur Fouriertransformation hängengeblieben. Vielleicht kann mir ja jemand helfen. Es geht um folgenden Satz:

Für Funktionen f  [mm] \in \partial [/mm] läßt sich f aus g mit Hilfe der Umkehrformel

f(x) =  [mm] \integral_{- \infty}^{ \infty} [/mm] {g(s)*exp(i*x*s) ds}

berechnen. Dabei ist die Menge  [mm] \partial [/mm] folgendermaßen definiert:

[mm] \partial [/mm] = {f [mm] \in C^\infty(R) [/mm] | sup [mm] |x^p [/mm] * [mm] f^q [/mm] (x) | < [mm] \infinity, [/mm] p,q [mm] \in [/mm] N0}

Das [mm] f^q [/mm] heisst q. Ableitung. p und q kommen aus den nat. Zahlen mit 0. Die Menge beschreibt alle komplexwertigen Fkt. die beliebig oft stetig diff'bar sind und mitsamt allen ihren Ableitungen stärker als jede Potenz von 1/|x| für [mm] |x|->\infinity [/mm] gegen 0 konvergieren.

Jetzt soll an einer Stelle im Beweis folgendes gezeigt werden:

[mm] s^p [/mm] * [mm] g^q [/mm] (s) ist beschränkt. Es wurde nun gezeigt:

[mm] s^p [/mm] * [mm] g^q [/mm] (s) = [mm] (-i)^p [/mm] * [mm] \integral_{- \infty}^{ \infty} [/mm] {exp(-i*x*s) [mm] (d/dt)^p [(-it)^q [/mm] *f(t)] dt}

Jetzt steht drunter: "Da mit f auch [mm] (-it)^q [/mm] f und [mm] (d/dt)^p [(-it)^q [/mm] *f(t)] zu  [mm] \partial [/mm] gehören, folgt hieraus die Beschränktheit von [mm] s^p [/mm] * [mm] g^q [/mm] (s)."

Das ist genau die Stelle, die ich nicht verstehe. Ich sehe ein, dass [mm] (d/dt)^p [(-it)^q [/mm] *f(t)] zu  [mm] \partial [/mm] gehört, aber warum ist dann das gesamte Integral beschränkt? Vielleicht kann mir jemand helfen. Ich überlege nun schon eine ganze Weile, komme aber nicht so recht weiter.

Auf jeden Fall vielen Dank schonmal

Viele Grüße
Marco


        
Bezug
Fouriertransformation: Antwort
Status: (Antwort) fertig Status 
Datum: 16:15 Mo 29.08.2005
Autor: choosy

Schau einfach mal scharf hin: ist
[mm](d/dt)^p [(-it)^q \cdot f(t)] \in \partial[/mm],
so ist
[mm] $\sup \big\|\left(\frac{d}{dt}\right)^p [(-it)^q \cdot [/mm] f(t)] [mm] \big\| [/mm] =:c < [mm] \infty$ [/mm]

(auch wenn [mm] $(s^p*g^q)(s)$ [/mm] keine glückliche bezeichnung ist, behalte ich sie mal bei)

also ist
[mm] $|(s^p*g^q)(s) [/mm] |=  [mm] \big|(-i)^p\cdot \int_{-\infty}^{\infty} [/mm] exp(-i*x*s)  [mm] \cdot \left(\frac{d}{dt}\right)^p [(-it)^q \cdot [/mm] f(t)]dt  [mm] \big| \leq |(-i)^p [/mm] | [mm] \cdot\int_{-\infty}^{\infty}| [/mm] exp(-i*x*s)  [mm] \cdot [/mm] c |  [mm] \;dt [/mm] = $ konstant,
also beschränkt

Bezug
                
Bezug
Fouriertransformation: Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:12 Sa 05.11.2005
Autor: Cardmaker

Hallo,

vielen vielen Dank. Jetzt hab ichs verstanden. War eigentlich gar nicht mal so schwer, aber wenn man so einen langen Beweis ließt grübelt man dann auch schon mal an den "einfachen" Sachen. Hätte es aber wohl alleine nicht hingekriegt.

Vielen Dank nochmals

Liebe Grüße
Marco

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]