matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFourier-TransformationFouriertransformation
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Fourier-Transformation" - Fouriertransformation
Fouriertransformation < Fourier-Transformati < Transformationen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Fourier-Transformation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Fouriertransformation: Ansatz
Status: (Frage) beantwortet Status 
Datum: 23:31 So 22.01.2012
Autor: paul87

Aufgabe
Berechnen Sie die Fourier-Transformierte der folgenden Funktion:

[mm] f(t)=\bruch{cos(2t)}{t^2+4t+5}. [/mm]




Hallo Leute,

ich sitze jetzt schon sehr sehr lange an der Aufgabe. Ich habe schon sämtliche Umformungen oder Ansätze probiert. Jedoch vereinfacht sich das Problem an keiner Stelle.

Ich weis nicht mehr weiter, so schwer kann das doch nicht sein! :)

Hat jemand vielleicht einen Lösungsvorschlag?

Viele Grüße und einen guten Start in die Woche.

        
Bezug
Fouriertransformation: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:28 Mo 23.01.2012
Autor: paul87

Hat denn Niemand einen Ansatz oder eine Idee?

LG

Bezug
        
Bezug
Fouriertransformation: Antwort
Status: (Antwort) fertig Status 
Datum: 18:42 Mo 23.01.2012
Autor: fencheltee


> Berechnen Sie die Fourier-Transformierte der folgenden
> Funktion:
>  
> [mm]f(t)=\bruch{cos(2t)}{t^2+4t+5}.[/mm]
>  
>
>
> Hallo Leute,
>  
> ich sitze jetzt schon sehr sehr lange an der Aufgabe. Ich
> habe schon sämtliche Umformungen oder Ansätze probiert.
> Jedoch vereinfacht sich das Problem an keiner Stelle.
>
> Ich weis nicht mehr weiter, so schwer kann das doch nicht
> sein! :)

hallo,
naja ganz so einfach ist die aufgabe ja auch nicht.
die multiplikation mit dem cosinus lassen wir erstmal raus, und behandelt ihn später mit dem modulationssatz
die interessante funktion ist dann noch
[mm] \frac{1}{t^2+4t+5} [/mm]
schreibt man diese jedoch als
[mm] \frac{1}{(t+2)^2+1} [/mm] und denkt an die dualität, findet man dann doch ne transformation

>
> Hat jemand vielleicht einen Lösungsvorschlag?
>
> Viele Grüße und einen guten Start in die Woche.

gruß tee

Bezug
                
Bezug
Fouriertransformation: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 19:36 Mo 23.01.2012
Autor: paul87

Ich habe jetzt für den teil [mm] \bruch{1}{(t+2)^2+1} [/mm] den Verschiebungssatz angewandt. Und den Cosinus habe ich in e-Funktionen umgewandelt und dann den Dämpfungssatz angewandt. Leider habe ich jetzt mein Ergebnis nicht hier, aber wäre der Ansatz denn so richtig?

Modulationssatz und dualität sagen mir in dem Zusammenhang leider nichts.



Bezug
                        
Bezug
Fouriertransformation: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:20 Mi 25.01.2012
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Fourier-Transformation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]