matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenFourierreihe von Signalen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Folgen und Reihen" - Fourierreihe von Signalen
Fourierreihe von Signalen < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Fourierreihe von Signalen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:36 Sa 13.11.2010
Autor: DasDogma

Hallo Leute.

Ich habe ein Problem im Thema Signaltheorie. Die Frage an sich würde ich eher der Mathematik zuordnen.
Und zwar handelt es sich um Fourierreihen. Wir sollen dabei für folgende Signale
[mm] s(t)\begin{cases} A, & \mbox{für } 0\le t\le 0,5T \\ 0, & \mbox{für } 0,5T \le t \le T \end{cases} \mbox{und } x(t)\begin{cases} \frac{2A}{T}, & \mbox{für } 0\le t\le 0,5T \\ 2A-\frac{2A}{T}, & \mbox{für } 0,5T \le t \le T \end{cases}[/mm]
eine Fourierreihe aufgestellt werden und die dann in Amplituden-Phasen-Notation in folgedem Schema notiert werden
[mm]f(t)=\frac{a_{0}}{2}+\summe_{n=1}^{\infty}(c_{n}\cos (n\omega t+\phi_{n}))[/mm] mit [mm]c_{n}=\wurzel{a_{n}^2+b_{n}^2}, \phi_{n}=-\arctan (\frac{b_{n}}{a_{n}})[/mm]

Bei s(t) ist sofort ersichtlich, dass [mm]a_{n}=0[/mm], da diese Funktion ungerade ist. Aber bei der Bestimmung von [mm]\phi_{n}[/mm] würde ich dabei durch 0 teilen. Was kann ich dann machen? Sollte ich dabei den Grenzwert ins unendliche bestimmen?

Bei x(t) ist es genau anders herum. Dort würde [mm]b_{n}=0[/mm] sein. Wird [mm]\phi_{n}=0[/mm] immer so sein?

Die Frage habe ich natürlich schon gegooglet und noch in keinem anderen Forum gestellt.

Ich hoffe Ihr könnt mir helfen und ich bedanke mich schon mal im Voraus.

Schönen Tag noch
Stefan

        
Bezug
Fourierreihe von Signalen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:15 Sa 13.11.2010
Autor: MathePower

Hallo DasDogma,

> Hallo Leute.
>  
> Ich habe ein Problem im Thema Signaltheorie. Die Frage an
> sich würde ich eher der Mathematik zuordnen.
>  Und zwar handelt es sich um Fourierreihen. Wir sollen
> dabei für folgende Signale
>  [mm]s(t)\begin{cases} A, & \mbox{für } 0\le t\le 0,5T \\ 0, & \mbox{für } 0,5T \le t \le T \end{cases} \mbox{und } x(t)\begin{cases} \frac{2A}{T}, & \mbox{für } 0\le t\le 0,5T \\ 2A-\frac{2A}{T}, & \mbox{für } 0,5T \le t \le T \end{cases}[/mm]
>  
> eine Fourierreihe aufgestellt werden und die dann in
> Amplituden-Phasen-Notation in folgedem Schema notiert
> werden
>  [mm]f(t)=\frac{a_{0}}{2}+\summe_{n=1}^{\infty}(c_{n}\cos (n\omega t+\phi_{n}))[/mm]
> mit [mm]c_{n}=\wurzel{a_{n}^2+b_{n}^2}, \phi_{n}=-\arctan (\frac{b_{n}}{a_{n}})[/mm]
>  
> Bei s(t) ist sofort ersichtlich, dass [mm]a_{n}=0[/mm], da diese
> Funktion ungerade ist. Aber bei der Bestimmung von [mm]\phi_{n}[/mm]
> würde ich dabei durch 0 teilen. Was kann ich dann machen?
> Sollte ich dabei den Grenzwert ins unendliche bestimmen?


Ich denke das kannst Du Die sparen.

Denn der Winkel [mm]\phi_{n}[/mm] ist bestimmt.

Es folgt nämlich aus [mm]\cos\left(\phi_{n}\right)=0[/mm], daß gilt:

[mm]\phi_{n}=\bruch{2*k+1}{2}*\pi, \ k \in \IZ[/mm]

Das genaue k hängt vom Vorzeichen von [mm]b_{n}[/mm] ab.


>  
> Bei x(t) ist es genau anders herum. Dort würde [mm]b_{n}=0[/mm]
> sein. Wird [mm]\phi_{n}=0[/mm] immer so sein?


Das kommt auf das Vorzeichen von [mm]a_{n}[/mm] an.


>  
> Die Frage habe ich natürlich schon gegooglet und noch in
> keinem anderen Forum gestellt.
>  
> Ich hoffe Ihr könnt mir helfen und ich bedanke mich schon
> mal im Voraus.
>  
> Schönen Tag noch
>  Stefan


Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]