matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMapleFourierreihe/Grenfunktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Maple" - Fourierreihe/Grenfunktion
Fourierreihe/Grenfunktion < Maple < Mathe-Software < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Maple"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Fourierreihe/Grenfunktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:02 Mo 01.07.2013
Autor: Rated-R

Hallo,

ich muss mich in letzter Zeit mit der Analyse von Fourierreihen auseinandersetzten.

Leider habe ich ein paar Probleme das mit Maple hinzubekommen

Wenn ich eine Fourierreihe habe z.b [mm] \summe_{i=1}^{n}\bruch{sin(i*x)}{i} [/mm]

in maple definiert

f:=n,x->sum(sin(i*x)/i,i=1..n);

wenn ich ich die funktion jetzt an bestimmen x stellen auswerten lasse,geht das bei Nullstellen problemlos
f(n,0)=0
aber bei
f(n,1/2)=...LerchPhi(...)...
limit(f(n,1/2),n=infinity) liefert leider auch kein brauchbares Ergebnis, wie kann ich den "Grenzwert" für n gegen unendlich in maple berechnen lassen? bzw. wie kann ich die komplette Grenzfunktion also die funktion gegen die f(n,x) konvergiert berechnen lassen?

Danke für eure Hilfe
gruß tom


        
Bezug
Fourierreihe/Grenfunktion: Funktion dafür
Status: (Antwort) fertig Status 
Datum: 16:45 Mo 01.07.2013
Autor: Infinit

Hallo tom,
zu welcher Funktion soll denn diese Fourierreihe gehören? Nicht alle Gebilde, die einen Sinus- oder einen Cosinusterm besitzen und aufaddiert werden, sind auch automatisch Fourierreihen.
Viele Grüße,
Infinit

Bezug
                
Bezug
Fourierreihe/Grenfunktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:03 Mo 01.07.2013
Autor: Rated-R

Danke für deine Antwort.

Müsste die "Sägezahnkurve" sein, also [mm] -1/2*x+1/2*\pi [/mm] für [mm] 0\le [/mm] x [mm] \le 2*\pi [/mm] und eben periodisch verschoben. So könnte ich zwar den Grenzwert per Hand ausrechnen also [mm] -1/2*1/2+1/2*\pi \approx [/mm] 1.322

aber Maple müsste doch auch draufkommen und dafür fehlt mir die Syntax.



Bezug
                        
Bezug
Fourierreihe/Grenfunktion: Sägezahn
Status: (Antwort) fertig Status 
Datum: 18:01 Mi 03.07.2013
Autor: Infinit

Hallo tiom,
ich habe gerade mal die Reihe nachgerechnet und ja, für den Sägezahn, den Du angegeben hast, kommt eine reine Sinusreihe aus, die an den Sprungstellen der Funktion gegen den arithmetischen Mittelwert von linkem und rechtem Grenzwert konvergiert.
Das ergibt also
[mm] \sum_{n=0}^{\infty} \bruch{\sin (nx)}{n} [/mm]
Was da bei maple passiert, kann ich Dir beim besten Willen nicht sagen, aber die Konvergenz ist zu sehen, wenn Du mal einen Wert für x heraussuchst und n bis 20 oder 30 laufen lässt.
Viele Grüße,
Infinit

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Maple"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]