matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFourier-TransformationFourierkoeffizienten
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Fourier-Transformation" - Fourierkoeffizienten
Fourierkoeffizienten < Fourier-Transformati < Transformationen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Fourier-Transformation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Fourierkoeffizienten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:49 Mi 27.08.2014
Autor: RunOrVeith

Aufgabe
Sei f: [mm] \IR \to \IR [/mm] eine 2 [mm] \pi [/mm] periodische Funktion, die auf [mm] [-\pi,\pi) [/mm] gegeben ist durch:
f(x)= -x, falls x [mm] \in [-\pi,0) [/mm]
       0, falls x [mm] \in [0,\pi) [/mm]
(Andere Formatierung will irgendwie nicht)

Berechnen sie die Reelle Fourierreihe [mm] s_f [/mm] von f.


Ich habe die Musterlösung vor mir und komme auch weitgehend auf das gleiche Ergebnis, nur bei einer Sache brauche ich Hilfe.
[mm] a_0 [/mm] = [mm] \pi/2 [/mm]   , das habe ich auch
[mm] a_n [/mm] = [mm] \bruch{1}{n^2*\pi}*(-1+(-1)^n) [/mm]   ,das habe ich auch.
[mm] b_n [/mm] = [mm] \bruch{(-1)^n}{n} [/mm]  , da habe ich etwas leicht anderes.
Mein Rechenweg:

[mm] \bruch{1}{\pi} \integral_{-\pi}^{0}{-x*sin(nx) dx} [/mm] =
[mm] -\bruch{1}{\pi} \integral_{-\pi}^{0}{x*sin(nx) dx} [/mm] =
[mm] -\bruch{1}{\pi}*([x*cos(nx)*\bruch{1}{n} ]^0_{-\pi}-\integral_{-\pi}^{0}{cos(nx)*\bruch{1}{n} dx} [/mm] =
- [mm] \bruch{1}{n\pi}*((0-((-\pi)*(-1)^n) [/mm] - 0 ) =
- [mm] \bruch{(-1)^n}{n} [/mm]

Laut Musterlösung ist der Schritt
[mm] \bruch{1}{\pi} \integral_{-\pi}^{0}{-x *sin(nx) dx} [/mm] =
[mm] -\bruch{1}{n\pi}*([-x*cos(nx)] ^0_{\pi}+\integral_{-\pi}^{0}{cos(nx) dx}) [/mm]
Genau das macht den Unterschied im Vorzeichen aus am Ende, leider komme ich einfach nicht darauf, was bei mir falsch ist.
Der Rest ist ja dann einfach noch:
[mm] s_f(x)= \bruch{a_0}{2}+\summe_{n=1}^{\infty}(a_n *cos(nx)+b_n*sin(nx)) [/mm]

Vielen Dank für die Hilfe!

        
Bezug
Fourierkoeffizienten: Antwort
Status: (Antwort) fertig Status 
Datum: 15:14 Mi 27.08.2014
Autor: Marcel

Hallo,

> Sei f: [mm]\IR \to \IR[/mm] eine 2 [mm]\pi[/mm] periodische Funktion, die auf
> [mm][-\pi,\pi)[/mm] gegeben ist durch:
>  f(x)= -x, falls x [mm]\in [-\pi,0)[/mm]
>         0, falls x [mm]\in [0,\pi)[/mm]
>  
> (Andere Formatierung will irgendwie nicht)
>  
> Berechnen sie die Reelle Fourierreihe [mm]s_f[/mm] von f.
>  
> Ich habe die Musterlösung vor mir und komme auch
> weitgehend auf das gleiche Ergebnis, nur bei einer Sache
> brauche ich Hilfe.
>  [mm]a_0[/mm] = [mm]\pi/2[/mm]   , das habe ich auch
>  [mm]a_n[/mm] = [mm]\bruch{1}{n^2*\pi}*(-1+(-1)^n)[/mm]   ,das habe ich
> auch.
>  [mm]b_n[/mm] = [mm]\bruch{(-1)^n}{n}[/mm]  , da habe ich etwas leicht
> anderes.
>  Mein Rechenweg:
>  
> [mm]\bruch{1}{\pi} \integral_{-\pi}^{0}{-x*sin(nx) dx}[/mm] =
>  [mm]-\bruch{1}{\pi} \integral_{-\pi}^{0}{x*sin(nx) dx}[/mm] =
>  [mm]-\bruch{1}{\pi}*([x*cos(nx)*\bruch{1}{n} ]^0_{-\pi}-\integral_{-\pi}^{0}{cos(nx)*\bruch{1}{n} dx}\red{)}[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)



wie Du selbst unten schreibst, machst Du hier den Fehler. Ich berechne
mal

    $\int x*\sin(nx)dx$

per partieller Integration:
Eine Stammfunktion von $x \mapsto \sin(n*x)$ ist $x \mapsto \red{-\,}\frac{1}{n}\cos(nx)$ (beachte $\cos'=\red {-\;}\sin$) und
daher

    $\int x\sin(nx)dx=\left[x*\frac{\red{-1}}{n}\cos(nx)}\right]-\int \underbrace{(x)'}_{=\red{+\,}1}*\frac{\red{-1}}{n}\cos(nx)dx$

Vielleicht bist Du ein wenig durcheinandergekommen und hast mit $(-x)\,$ an
einer Stelle gearbeitet, wo eigentlich "$(x)\,$" hingehört?

> =
> - [mm]\bruch{1}{n\pi}*((0-((-\pi)*(-1)^n)[/mm] - 0 ) =
>  - [mm]\bruch{(-1)^n}{n}[/mm]
>  
> Laut Musterlösung ist der Schritt
>  [mm]\bruch{1}{\pi} \integral_{-\pi}^{0}{-x *sin(nx) dx}[/mm] =
>  [mm]-\bruch{1}{n\pi}*([-x*cos(nx)] ^0_{\pi}+\integral_{-\pi}^{0}{cos(nx) dx})[/mm]

So ist das korrekt, siehe oben!
(Allerdings erst, wie Du es oben schreibst:

    [mm] $\bruch{1}{\pi} \integral_{-\pi}^{0}{-x *sin(nx) dx}=\red{\,-\,}\bruch{1}{\pi} \integral_{-\pi}^{0}{x *sin(nx) dx}$ [/mm]

schreiben und dann partiell integrieren. Auch, wenn das so nicht direkt
nötig wäre und man auch direkt

    [mm] $\bruch{1}{\pi} \integral_{-\pi}^{0}{-x *sin(nx) dx}$ [/mm]

partiell integrieren könnte!)

Gruß,
  Marcel

> Genau das macht den Unterschied im Vorzeichen aus am Ende,
> leider komme ich einfach nicht darauf, was bei mir falsch
> ist.
> Der Rest ist ja dann einfach noch:
>  [mm]s_f(x)= \bruch{a_0}{2}+\summe_{n=1}^{\infty}(a_n *cos(nx)+b_n*sin(nx))[/mm]
>  
> Vielen Dank für die Hilfe!


Bezug
                
Bezug
Fourierkoeffizienten: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:07 Mi 27.08.2014
Autor: RunOrVeith

Vielen Dank, das ist natürlich einleuchtend. Komisch, dass ich da nicht selbst drauf gekommen bin, wenn man den ganzen Tag nichts anderes macht steht man wohl manchmal auf dem Schlauch :)

Schönen Tag noch!

Bezug
                        
Bezug
Fourierkoeffizienten: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:31 Mi 27.08.2014
Autor: Marcel

Hi,

> Vielen Dank, das ist natürlich einleuchtend.

gerne.

> Komisch, dass
> ich da nicht selbst drauf gekommen bin, wenn man den ganzen
> Tag nichts anderes macht steht man wohl manchmal auf dem
> Schlauch :)

Naja, diesbezüglich gibt es nur drei Ratschläge:
1. Die Sachen einfach mal weglegen, etwas ganz anderes machen und zu
einem späteren Zeitpunkt nochmal draufgucken (evtl. gar an einem
anderen Tag). Dann hat man nicht das Problem, dass das Gehirn sich an
die gleichen Gedanken gewöhnt hat und man ein und den selben Fehler
immer wieder wiederholt.

2. Alle Schritte detailliert aufschreiben. So sieht man evtl. durch das
Aufschreiben eines Zwischenschritts, welchen Gedankenfehler man
ständig gemacht hat.

3. Jemand anderen fragen und drübergucken lassen. ;-)
  

> Schönen Tag noch!

Dir auch, Danke!

Gruß,
  Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Fourier-Transformation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]