Fourierinversion < Fourier-Transformati < Transformationen < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) reagiert/warte auf Reaktion | Datum: | 19:07 Sa 23.07.2016 | Autor: | Hias |
Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
Aufgabe | Hallo, meine Frage ist folgende:
In $\IR$ gilt für $f,\hat{f}\in L^1(\IR)$, dass $f(x)=\bruch{1}{2\pi}\int_{\IR}\hat{f}(\omega)e^{i\omega x}d\omega$
Gibt es eine äquivalente Aussage auch bezüglich der Fouriertransformation auf dem Torus? |
In der Vorlesung wurde die Fouriertransformation auf dem Torus wie folgt definert:
$\hat{f}(n)=\bruch{1}{2\pi}}\int_T f(z)z^{-n}dz $ mit $z=e^{it}$.
da die Fouriertransformation auf dem Torus diskret ist, würde ich eine äquivalente Aussage wie $f(z)=\sum_{n\in\IZ}\hat{f}(n) z^n $ erwarten.
Die einzige Aussage die in diese Richtung geht und wir in der Voresung hatten sagt aus, dass in einem homogenen Banachraum B, mit gewissen Eigenschaften, diese Summe in der Norm von B gegen f(z) konvergiert, genau dann wenn der homogene Banachraum B Konjugation erlaubt.
Gibt es keine so schöne Aussage auf dem Torus wie in $\IR$ und ist die Normkonvergenz das beste was ich erwaten kann, oder gibt es eine Formel, welche wir eventuell nicht in der Vorlesung hatten?
Vielen Dank im Voraus,
Hias
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 19:14 Sa 23.07.2016 | Autor: | Hias |
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 19:58 Sa 23.07.2016 | Autor: | Hias |
Die Frage ist hinfällig. Man kann es analog zu [mm] $\IR$ [/mm] beweisen, wenn man [mm] $\hat{f} \in l^1(\IZ)$ [/mm] fordert
|
|
|
|