matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-SonstigesFourieranalysis
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Analysis-Sonstiges" - Fourieranalysis
Fourieranalysis < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Fourieranalysis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:38 Mo 02.04.2012
Autor: simplify

Aufgabe
[mm] a\bruch{1}{\wurzel2\pi} [/mm] + [mm] \summe_{}^{} b_{n} \bruch{1}{\wurzel\pi}cos(nx) [/mm] + [mm] \summe_{}^{} c_{n}\bruch{1}{\wurzel\pi}sin(nx) [/mm]
mit
[mm] f(x)=\begin{cases} 1, & \mbox{für } -\pi\le x\le0 \mbox{ } \\ -1, & \mbox{für } \pi\ge x>0 \mbox{ } \end{cases} [/mm]

Hallo,
die Aufgabenstellung ist leider nicht formaö vollständig,da ich sie schnell mitgeschrieben habe,aber vielleicht könnt ihr trotzdem meine Frage beantworten.
Zu dieser "Aufgabe" gab es Aussagen die wahr bzw falsch waren und zwar z.B. Folgende:
[mm] b_{n}=0 [/mm] für alle geraden n und [mm] c_{n}=0 [/mm] für alle ungeraden n (falsch)
[mm] b_{n}=0 [/mm] für alle ungeraden n und [mm] c_{n}=0 [/mm] für alle geraden n (wahr)

Meine Frage ist jetzt wie ich das erkenne oder berechnen kann? Ich selber wusste nur das f(x) ungerade ist und dann ja eigentlich gilt:
[mm] b_{n}=0 [/mm] für alle n und eine reine Sinusreihe übrig bleibt.
Hat es vielleicht damit etwas zu tun, dass die Funktion [mm] 2\pi-periodisch [/mm] ist?
Danke schon mal.


        
Bezug
Fourieranalysis: Antwort
Status: (Antwort) fertig Status 
Datum: 18:34 Mo 02.04.2012
Autor: leduart

Hallo,
die 2 te Aussage ist wahr es sind zwar (ungerade fkt) alle [mm] b_n=0 [/mm] aber deshalb ja auch alle ungeraden. und die geraden sin Werte sind alle 0 weil sich sin(2nx) auf den Intervallen genausoviele pos wie neg Buckel hat -
Gruss leduart

Bezug
                
Bezug
Fourieranalysis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:11 Di 03.04.2012
Autor: simplify

Aufgabe
[mm] L^{2}([-\pi,\pi],\mu, \IC) [/mm]
<f,g> = [mm] \integral_{-\pi}^{\pi}{e_{k} \overline{f(x)} dx} [/mm]
[mm] e_{k}= \bruch{1}{\wurzel2\pi} e^{ikx} [/mm]

Zeige: [mm] \limes_{k\rightarrow\infty} =0 [/mm]

Vielen Dank für die Antwort.Ich habe dann auch mal die ersten 3 ausgerechnet und gezeichnet,dann habe ich es auch irgendwann gesehen.
Ich hab da jetzt noch eine andere Aufgabe, bei der ich nicht mehr Infos gegeben hatte.
Eigentlich muss ich ja nur einsetzen und dann sollte man das schon sehen,aber wie sieht denn f aus? ist damit folgende Form gemeint:
[mm] f(x)=\summe_{}^{}c_{k}e^{ikx} [/mm] ?

Bezug
                        
Bezug
Fourieranalysis: Antwort
Status: (Antwort) fertig Status 
Datum: 09:35 Mi 04.04.2012
Autor: fred97


> [mm]L^{2}([-\pi,\pi],\mu, \IC)[/mm]
>  <f,g> =

> [mm]\integral_{-\pi}^{\pi}{e_{k} \overline{f(x)} dx}[/mm]
>  [mm]e_{k}= \bruch{1}{\wurzel2\pi} e^{ikx}[/mm]
>  
> Zeige: [mm]\limes_{k\rightarrow\infty} =0[/mm]
>  Vielen Dank
> für die Antwort.Ich habe dann auch mal die ersten 3
> ausgerechnet und gezeichnet,dann habe ich es auch
> irgendwann gesehen.
>  Ich hab da jetzt noch eine andere Aufgabe, bei der ich
> nicht mehr Infos gegeben hatte.
> Eigentlich muss ich ja nur einsetzen und dann sollte man
> das schon sehen,aber wie sieht denn f aus? ist damit
> folgende Form gemeint:
>  [mm]f(x)=\summe_{}^{}c_{k}e^{ikx}[/mm] ?

Für $f [mm] \in L^{2}([-\pi,\pi],\mu, \IC) [/mm] $ gilt doch:

            [mm] $||f||^2= \summe_{k}^{}||^2$ [/mm]

Was weißt Du über die Folge der Reihenglieder einer konvergenten Reihe ?

FRED


Bezug
                                
Bezug
Fourieranalysis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:42 Mi 04.04.2012
Autor: simplify

Na ich weiß,wenn die Folge der Reihenglieder monoton fallend und deren Grenzwert null, so ist die Reihe konvergent.
Andersherum kann ich also nach dem Leibniz-Kriterium sagen, da meine Reihe konvergent ist ist die Folge der Reihenglieder monoton fallend und viel wichtiger der Grenzwert null ist. Richtig?

Bezug
                                        
Bezug
Fourieranalysis: Antwort
Status: (Antwort) fertig Status 
Datum: 12:15 Mi 04.04.2012
Autor: fred97


> Na ich weiß,wenn die Folge der Reihenglieder monoton
> fallend und deren Grenzwert null, so ist die Reihe
> konvergent.

Das ist Unfug !  Beispiel: [mm] \sum \bruch{1}{n} [/mm]


>  Andersherum kann ich also nach dem Leibniz-Kriterium
> sagen, da meine Reihe konvergent ist ist die Folge der
> Reihenglieder monoton fallend und viel wichtiger der
> Grenzwert null ist. Richtig?

Das Leibnizkrit. hat hier nichts zu suchen. Die Folge der Reihenglieder einer konvergenten Reihe ist eine Nullfolge.

FRED


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]