matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFourier-TransformationFourier Reihe
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Fourier-Transformation" - Fourier Reihe
Fourier Reihe < Fourier-Transformati < Transformationen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Fourier-Transformation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Fourier Reihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:04 Di 15.04.2014
Autor: Tony_777

Aufgabe
Entwickeln Sie zu folgender Funktion die Fourier-Reihe, die keine Sinusglieder enthält.

[Dateianhang nicht öffentlich]

Meine Idee war es erstmal die Intervallgrenzen zu ändern.

[Dateianhang nicht öffentlich]

jetzt steh ich etwas auf dem schlauch. bk müsste ja 0 sein.
mein a0= 2h/pi. wie komme ich jetzt weiter.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

Dateianhänge:
Anhang Nr. 1 (Typ: png) [nicht öffentlich]
Anhang Nr. 2 (Typ: png) [nicht öffentlich]
        
Bezug
Fourier Reihe: Antwort
Status: (Antwort) fertig Status 
Datum: 11:48 Di 15.04.2014
Autor: fred97


> Entwickeln Sie zu folgender Funktion die Fourier-Reihe, die
> keine Sinusglieder enthält.
>  
> [Dateianhang nicht öffentlich]
>  Meine Idee war es erstmal die Intervallgrenzen zu
> ändern.
>  
> [Dateianhang nicht öffentlich]

Ja, damit hast Du f zu einer geraden und 2 [mm] \pi [/mm] - periodischen Funktion auf [mm] \IR [/mm] fortgesetzt.

>  
> jetzt steh ich etwas auf dem schlauch. bk müsste ja 0
> sein.
>  mein a0= 2h/pi. wie komme ich jetzt weiter.

Wie sind denn die Fourierkoeff. [mm] a_k [/mm] und [mm] b_k [/mm] definiert ???

FRED

>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt


Bezug
                
Bezug
Fourier Reihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:36 Di 15.04.2014
Autor: Tony_777

danke erstmal für die schnelle Antwort.
[mm] ak=2/T*\integral_{0}^{T}{f(x) }*cos(2pi/T [/mm] *kx) dx

[mm] bk=2/T*\integral_{0}^{T}{f(x) }*sin(2pi/T [/mm] *kx) dx

da die Funktion jetzt gerade ist müsste ja bk=0 sein.
Mein Problem liegt jetzt darin das ich nicht weißt wie ak aufschreiben
soll

Bezug
                        
Bezug
Fourier Reihe: Antwort
Status: (Antwort) fertig Status 
Datum: 12:52 Di 15.04.2014
Autor: leduart

Hallo
du unterteilst das Integral in o bis h und h bis [mm] \pi, [/mm] und setzt dein T=1 ein.
[mm] a_0 [/mm] getrennt berechnen.
Gruß leduart

Bezug
                                
Bezug
Fourier Reihe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:01 Di 15.04.2014
Autor: Tony_777

Vielen Dank.
Ich denke das ich es jetzt geschafft habe.
Vielen Dank nochmal:)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Fourier-Transformation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]