matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-SonstigesFormeldarstellung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Sonstiges" - Formeldarstellung
Formeldarstellung < Sonstiges < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Formeldarstellung: Unklarheiten
Status: (Frage) beantwortet Status 
Datum: 11:32 Di 02.03.2010
Autor: pueppiii

Aufgabe
Gegeben:  2 Systeme A und B, wobei gilt: [mm] p_{ij}^{A+B} [/mm] =  [mm] p_{i}^{A} p_{j}^{B} [/mm] ebenso  [mm] \varepsilon_{ij}^{A+B} [/mm] =  [mm] \varepsilon_{i}^{A} [/mm] + [mm] \varepsilon_{j}^{B}, [/mm] dann gilt

[mm] U_{q}(A+B) [/mm] = [mm] U_{q}(A) [/mm] + [mm] U_{q}(B) [/mm] + [mm] (1-q)[U_{q}(A)S_{q}(B)/k [/mm] + [mm] U_{q}(B)S_{q}(A)/k] [/mm]
was sich allgemein von [mm] U_{q}(A) [/mm] + [mm] U_{q}(B) [/mm] unterscheidet.

Hallo!
Meine Frage, die Gleichung lässt sich auch umschreiben in :
[mm] \bruch{U_{q}(A+B)}{[red] 1+ [/red](1-q)S_{q}(A+B)/k} [/mm] = [mm] \bruch{U_{q}(A)}{[red] 1+ [/red](1-q)S_{q}(A)/k} [/mm] + [mm] \bruch{U_{q}(B)}{[red] 1+ [/red](1-q)S_{q}(B)/k} [/mm]

aber leider komme ich da nicht drauf, ich habe jetzt auf der rechten Seite durch die Nenner geteilt und erhalte dann nach Umstellen:
[mm] \bruch{U_{q}(A+B)}{(1-q)S_{q}(A)/k (1-q)S_{q}(B)/k} [/mm] = [mm] \bruch{U_{q}(A)}{(1-q)S_{q}(A)/k} [/mm] + [mm] \bruch{U_{q}(B)}{(1-q)S_{q}(B)/k} [/mm]

Es fehlt aber die 1 + ... im Nenner auf der rechten Seite (siehe rot markiert) und die linke Seite stimmt nicht überein, oder kann ich die einfach zusammenfassen in [mm] \bruch{U_{q}(A+B)}{(1-q)S_{q}(A+B)/k}, [/mm] wobei mir aber immer noch die 1 + fehlt...

Danke für eure Hilfe!!

Lg püppiii

        
Bezug
Formeldarstellung: Antwort
Status: (Antwort) fertig Status 
Datum: 14:00 Di 02.03.2010
Autor: metalschulze


> Gegeben:  2 Systeme A und B, wobei gilt: [mm]p_{ij}^{A+B}[/mm] =  
> [mm]p_{i}^{A} p_{j}^{B}[/mm] ebenso  [mm]\varepsilon_{ij}^{A+B}[/mm] =  
> [mm]\varepsilon_{i}^{A}[/mm] + [mm]\varepsilon_{j}^{B},[/mm] dann gilt
>  
> [mm]U_{q}(A+B)[/mm] = [mm]U_{q}(A)[/mm] + [mm]U_{q}(B)[/mm] + [mm](1-q)[U_{q}(A)S_{q}(B)/k[/mm]
> + [mm]U_{q}(B)S_{q}(A)/k][/mm]
>  was sich allgemein von [mm]U_{q}(A)[/mm] + [mm]U_{q}(B)[/mm] unterscheidet.
>  Hallo!
>  Meine Frage, die Gleichung lässt sich auch umschreiben in
> :
>  [mm]\bruch{U_{q}(A+B)}{[red] 1+ [/red](1-q)S_{q}(A+B)/k}[/mm] =
> [mm]\bruch{U_{q}(A)}{[red] 1+ [/red](1-q)S_{q}(A)/k}[/mm] + [mm]\bruch{U_{q}(B)}{[red] 1+ [/red](1-q)S_{q}(B)/k}[/mm]
>  

Hallo
klammere doch auf der rechten Seite deiner Ausgangsgleichung erst mal [mm] U_{q}(A) [/mm] und [mm] U_{q}(B) [/mm] aus.
Das erklärt schon mal wo die 1 in den Nennern der rechten Seite herkommt...

> aber leider komme ich da nicht drauf, ich habe jetzt auf
> der rechten Seite durch die Nenner geteilt und erhalte dann
> nach Umstellen:
>  [mm]\bruch{U_{q}(A+B)}{(1-q)S_{q}(A)/k (1-q)S_{q}(B)/k}[/mm] =
> [mm]\bruch{U_{q}(A)}{(1-q)S_{q}(A)/k}[/mm] +
> [mm]\bruch{U_{q}(B)}{(1-q)S_{q}(B)/k}[/mm]
>  
> Es fehlt aber die 1 + ... im Nenner auf der rechten Seite
> (siehe rot markiert) und die linke Seite stimmt nicht
> überein, oder kann ich die einfach zusammenfassen in
> [mm]\bruch{U_{q}(A+B)}{(1-q)S_{q}(A+B)/k},[/mm] wobei mir aber immer
> noch die 1 + fehlt...
>  
> Danke für eure Hilfe!!
>  
> Lg püppiii


Bezug
                
Bezug
Formeldarstellung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:04 Di 02.03.2010
Autor: pueppiii

Das hab ich getan, dann erhalte ich auf der rechten Seite:

...= [mm] (U_{q}(A) [/mm] + [mm] U_{q}(B)) (1+(U_{q}(B)S_{q}/k) [/mm] +  [mm] (U_{q}(A)S_{q}/k)) [/mm]

Nun habe ich rumprobiert, aber komme dennoch nich auf das gegebene...?
Wo liegt bloß der Trick?

Danke!

Bezug
                        
Bezug
Formeldarstellung: Antwort
Status: (Antwort) fertig Status 
Datum: 17:53 Di 02.03.2010
Autor: metalschulze

Nach dem ausklammern sollte da

[mm] U_{q}(A+B) [/mm] = [mm] U_{q}(A)*[1 [/mm] + (1-q) * [mm] S_{q}(B)/k] [/mm] + [mm] U_{q}(B)*[1 [/mm] + (1-q) * [mm] S_{q}(A)/k] [/mm] stehen.

Wenn du jetzt durch die beiden Ausdrücke auf der rechten Seite dividierst, steht auf der rechten Seite genau das, was auch in der Lösung steht.
Den Nenner der linken Seite kann man anscheinend nach irgendeiner Regel (die mir aber grad leider nicht klar ist) zusammenfassen.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]