Formel von Rodrigues < Numerik < Hochschule < Mathe < Vorhilfe
|
Aufgabe | a) Zeigen Sie: Für jede auf $[a, b]$ positive, stetige Funktion [mm] $\omega$ [/mm] ist druch $(f, g) := [mm] \int\limits_{a}^{b} \omega(x) [/mm] f(x) g(x) dx$ ein Skalarprodukt auf dem Raum der stetigen reellwertigen Funktionen definiert.
b) Zeigen Sie: Die bezüglich der Gewichtsfunktion [mm] $\omega$ [/mm] auf dem Intervall $[a, b]$ orthogonalen Polynome [mm] $p_{k}$ [/mm] erfüllen [mm] $p_{k} [/mm] = [mm] C_{k} \frac{1}{\omega(x)} \frac{d^{k}}{dx^{k}} [\omega(x) [/mm] (x - [mm] a)^{k} [/mm] (b - [mm] x)^{k}]$, $C_{k} \in \mathbb{R}$,
[/mm]
falls die rechte Seite ein Polynom vom Grad $k$ ist.
Hinweis: Weisen Sie nach, dass das wie oben definierte Polynom orthogonal zu allen Polynomen vom Grad [mm] $\le [/mm] k - 1$ ist. Verwenden Sie dazu partielle Integration. |
Guten Morgen an alle!
Ich habe seit Tagen mit obiger Aufgabe zu kämpfen. Die a) habe ich hinbekommen, aber bei der b) bin ich total überfordert...
Ich möchte gerne die Aufgabe hinbekommen, da in 2 Tagen die Abgabe ist und diese Aufgabe sehr wichtig für meine Klausurzulassung ist...
Ich habe einen Ansatz, aber ich mache mir das Problem augenscheinlich eher schwieriger, als einfacher.
Zu der b):
Seien $k, l [mm] \in \mathbb{N}$. [/mm] Sei o.B.d.A $k [mm] \le [/mm] l$.
[mm] $(p_{k}, p_{l}) [/mm] = [mm] \int\limits_{a}^{b} \omega(x) \cdot C_{k} \frac{1}{\omega(x)} \frac{d^{k}}{dx^{k}} [\omega(x) [/mm] (x - [mm] a)^{k} [/mm] (b - [mm] x)^{k}] \cdot C_{l} \frac{1}{\omega(x)} \frac{d^{l}}{dx^{l}} [\omega(x) [/mm] (x - [mm] a)^{l} [/mm] (b - [mm] x)^{l}] [/mm] dx$
$ = [mm] C_{k} C_{l} \int\limits_{a}^{b} \frac{1}{\omega(x)} \cdot \frac{d^{k}}{dx^{k}} [\omega(x) [/mm] (x - [mm] a)^{k} [/mm] (b - [mm] x)^{k}] \cdot \frac{d^{l}}{dx^{l}} [\omega(x) [/mm] (x - [mm] a)^{l} [/mm] (b - [mm] x)^{l}] [/mm] dx$
Jetzt habe ich im Internet eine Formel für die $l$ - fache Produktregel gefunden; die sogenannte Leibnizformel. Die hatten wir zwar noch nicht, aber mir ist sonst keine andere Idee eingefallen. Im Notfall zeige ich die Herleitung, falls es keine einfachere Ideen gibt. Für zwei Funktionen $u, v$ gilt [mm] $(uv)^{(n)} [/mm] = [mm] \sum\limits_{k = 0}^{n} \binom{n}{k} u^{(k)} v^{(n - k)}$
[/mm]
Damit gilt
[mm] $(p_{k}, p_{l}) [/mm] = [mm] \int\limits_{a}^{b} \omega(x) \cdot C_{k} \frac{1}{\omega(x)} \frac{d^{k}}{dx^{k}} [\omega(x) [/mm] (x - [mm] a)^{k} [/mm] (b - [mm] x)^{k}] \cdot C_{l} \frac{1}{\omega(x)} \frac{d^{l}}{dx^{l}} [\omega(x) [/mm] (x - [mm] a)^{l} [/mm] (b - [mm] x)^{l}] [/mm] dx$
$ = [mm] \underbrace{C_{k} C_{l}}_{:= C} \int\limits_{a}^{b} \frac{1}{\omega(x)} \cdot \frac{d^{k}}{dx^{k}} [\omega(x) \underbrace{(x - a)^{k} (b - x)^{k}}_{:= R_{k}}] \cdot \frac{d^{l}}{dx^{l}} [\omega(x) \underbrace{(x - a)^{l} (b - x)^{l}}_{:= R_{l}}] [/mm] dx$
$= C [mm] \cdot \int\limits_{a}^{b} \frac{1}{\omega(x)} \cdot \frac{d^{k}}{dx^{k}} [\omega(x) \cdot R_{k}] \cdot \frac{d^{l}}{dx^{l}} [\omega(x) \cdot R_{l}] [/mm] dx$
$= C [mm] \cdot \int\limits_{a}^{b} \frac{1}{\omega(x)} \cdot \sum\limits_{i = 0}^{k} \binom{k}{i} \omega(x)^{(i)} R_{k}^{(k - i)} \cdot \sum\limits_{j = 0}^{l} \binom{l}{j} \omega(x)^{(j)} R_{l}^{(l - j)} [/mm] dx$
$= C [mm] \cdot \int\limits_{a}^{b} \frac{1}{\omega(x)} \cdot \sum\limits_{i = 0}^{k} \binom{k}{i} \omega(x)^{(i)} R_{k}^{(k - i)} \cdot \left ( \sum\limits_{j = k + 1}^{l} \binom{l}{j} \omega(x)^{(j)} R_{l}^{(l - j)} + \sum\limits_{i = 0}^{k} \binom{k}{i} \omega(x)^{(i)} R_{k}^{(k - i)} \right [/mm] ) dx $
Aber irgendwie wird die Rechnung nicht einfacher, sondern nur komplizierter.
Kann mir jemand an dieser Stelle helfen? Gibt es einen einfacheren Weg, die Formel zu beweisen?
Ich bedanke mich für jede Hilfe.
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 04:20 Do 26.11.2020 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|