matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenPrädikatenlogikFormel mit Relation
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Prädikatenlogik" - Formel mit Relation
Formel mit Relation < Prädikatenlogik < Logik < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Prädikatenlogik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Formel mit Relation: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:16 So 28.09.2008
Autor: Vogelfaenger

Aufgabe
Erinner, dass eine Relation (egt. eine binäre Relation) in axiomatischer Mengenlehre eine Menge bestehend von geordneten Paaren ist. Lass R eine Relation sein und lass [mm] \phi [/mm] = [mm] \phi(x) [/mm] die Formel [mm] \exists y:(x,y)\in [/mm] R sein. Lass S die Menge [mm] S=\cup(\cup [/mm] R) sein. Zeigt, dass [mm] x\in [/mm] S für jedes x so dass [mm] \phi(x) [/mm] gilt.  

Hallo Alle

Hat jemand bitte eine Lösungsidee zu dieser Aufgabe? Bloss die Aufgabe zu verstehen fällt mit etwas schwer, was heisst z.B. [mm] \cup(\cup [/mm] R) überhaupt?
Vielen Dank.

        
Bezug
Formel mit Relation: Antwort
Status: (Antwort) fertig Status 
Datum: 11:22 So 28.09.2008
Autor: Al-Chwarizmi

Aufgabe
  
> Erinner, dass eine Relation (egt. eine binäre Relation) in
> axiomatischer Mengenlehre eine Menge bestehend von
> geordneten Paaren ist. Lass R eine Relation sein und lass
> [mm]\phi[/mm] = [mm]\phi(x)[/mm] die Formel [mm]\exists y:(x,y)\in[/mm] R sein. Lass S
> die Menge [mm]S=\cup(\cup[/mm] R) sein. Zeigt, dass [mm]x\in[/mm] S für jedes
> x so dass [mm]\phi(x)[/mm] gilt.


        (die englische Sprache lässt grüßen ;-))
      


> Hallo Alle
>  
> Hat jemand bitte eine Lösungsidee zu dieser Aufgabe? Bloss
> die Aufgabe zu verstehen fällt mit etwas schwer, was heisst
> z.B. [mm]\cup(\cup[/mm] R) überhaupt?
>  Vielen Dank.


Hallo Iwan,

[mm] \phi(x) [/mm] bedeutet:  "x kommt als erstes Element in der
Relation R tatsächlich vor", also ist

       [mm] \{x\in G\ |\ \phi(x)\}=\{x\in G\ |\ \exists{y}(x,y)\in R\} [/mm]

   (G sei die Grundmenge, aus der die x und y stammen)

Die Schreibweise  [mm]S=\cup(\cup[/mm] R) hat vermutlich damit zu
tun, wie die geordneten Paare, welche ja die Elemente
von R sind, mengentheoretisch genau definiert sind,
vermutlich nach Kuratowski:

      (x,y)= [mm] \{\{ x \},\{ x,y \}\} [/mm]

Die Menge  [mm] \cup{R} [/mm]  ist dann die Menge aller [mm] \{ x \} [/mm]
und aller [mm] \{ x,y \} [/mm] mit [mm] (x,y)\in [/mm] R.
Die zweite Vereinigung wirft dann quasi alles in einen
Topf:

      [mm] S=\cup(\cup{R})=\{x\in G\ |\ \exists{y}(x,y)\in R\} \cup \{y\in G\ |\ \exists{x}(x,y)\in R\} [/mm]

      [mm] S=\{x\in G\ |\ \phi(x)\} \cup \{y\in G\ |\ \exists{x}(x,y)\in R\} [/mm]

S ist also die Menge aller Elemente aus G, die in der
Relation R auftreten, einerlei ob als erstes oder zweites
Element.

Daraus folgt sofort die Behauptung.


Schönen Gruß nach Dänemark !     al-Chw.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Prädikatenlogik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]